Initial commit
This commit is contained in:
commit
7d6442d0ac
149
.gitignore
vendored
Normal file
149
.gitignore
vendored
Normal file
|
@ -0,0 +1,149 @@
|
||||||
|
# Byte-compiled / optimized / DLL files
|
||||||
|
__pycache__/
|
||||||
|
*.py[cod]
|
||||||
|
*$py.class
|
||||||
|
|
||||||
|
# C extensions
|
||||||
|
*.so
|
||||||
|
|
||||||
|
# Distribution / packaging
|
||||||
|
.Python
|
||||||
|
build/
|
||||||
|
develop-eggs/
|
||||||
|
dist/
|
||||||
|
downloads/
|
||||||
|
eggs/
|
||||||
|
.eggs/
|
||||||
|
lib/
|
||||||
|
lib64/
|
||||||
|
parts/
|
||||||
|
sdist/
|
||||||
|
var/
|
||||||
|
wheels/
|
||||||
|
pip-wheel-metadata/
|
||||||
|
share/python-wheels/
|
||||||
|
*.egg-info/
|
||||||
|
.installed.cfg
|
||||||
|
*.egg
|
||||||
|
MANIFEST
|
||||||
|
|
||||||
|
# PyInstaller
|
||||||
|
# Usually these files are written by a python script from a template
|
||||||
|
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||||
|
*.manifest
|
||||||
|
*.spec
|
||||||
|
|
||||||
|
# Installer logs
|
||||||
|
pip-log.txt
|
||||||
|
pip-delete-this-directory.txt
|
||||||
|
|
||||||
|
# Unit test / coverage reports
|
||||||
|
htmlcov/
|
||||||
|
.tox/
|
||||||
|
.nox/
|
||||||
|
.coverage
|
||||||
|
.coverage.*
|
||||||
|
.cache
|
||||||
|
nosetests.xml
|
||||||
|
coverage.xml
|
||||||
|
*.cover
|
||||||
|
*.py,cover
|
||||||
|
.hypothesis/
|
||||||
|
.pytest_cache/
|
||||||
|
|
||||||
|
# Translations
|
||||||
|
*.mo
|
||||||
|
*.pot
|
||||||
|
|
||||||
|
# Django stuff:
|
||||||
|
*.log
|
||||||
|
local_settings.py
|
||||||
|
db.sqlite3
|
||||||
|
db.sqlite3-journal
|
||||||
|
|
||||||
|
# Flask stuff:
|
||||||
|
instance/
|
||||||
|
.webassets-cache
|
||||||
|
|
||||||
|
# Scrapy stuff:
|
||||||
|
.scrapy
|
||||||
|
|
||||||
|
# Sphinx documentation
|
||||||
|
docs/_build/
|
||||||
|
|
||||||
|
# PyBuilder
|
||||||
|
target/
|
||||||
|
|
||||||
|
# Jupyter Notebook
|
||||||
|
.ipynb_checkpoints
|
||||||
|
|
||||||
|
# IPython
|
||||||
|
profile_default/
|
||||||
|
ipython_config.py
|
||||||
|
|
||||||
|
# pyenv
|
||||||
|
.python-version
|
||||||
|
|
||||||
|
# pipenv
|
||||||
|
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||||
|
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||||
|
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||||
|
# install all needed dependencies.
|
||||||
|
#Pipfile.lock
|
||||||
|
|
||||||
|
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
||||||
|
__pypackages__/
|
||||||
|
|
||||||
|
# Celery stuff
|
||||||
|
celerybeat-schedule
|
||||||
|
celerybeat.pid
|
||||||
|
|
||||||
|
# SageMath parsed files
|
||||||
|
*.sage.py
|
||||||
|
|
||||||
|
# Environments
|
||||||
|
.env
|
||||||
|
.venv
|
||||||
|
env/
|
||||||
|
venv/
|
||||||
|
ENV/
|
||||||
|
env.bak/
|
||||||
|
venv.bak/
|
||||||
|
|
||||||
|
# Spyder project settings
|
||||||
|
.spyderproject
|
||||||
|
.spyproject
|
||||||
|
|
||||||
|
# Rope project settings
|
||||||
|
.ropeproject
|
||||||
|
|
||||||
|
# mkdocs documentation
|
||||||
|
/site
|
||||||
|
|
||||||
|
# mypy
|
||||||
|
.mypy_cache/
|
||||||
|
.dmypy.json
|
||||||
|
dmypy.json
|
||||||
|
|
||||||
|
# Pyre type checker
|
||||||
|
.pyre/
|
||||||
|
|
||||||
|
# Emacs
|
||||||
|
.dir-locals.el
|
||||||
|
.dir-locals.el~
|
||||||
|
|
||||||
|
# PyCharm
|
||||||
|
.idea/
|
||||||
|
|
||||||
|
# Mac OS
|
||||||
|
.DS_Store
|
||||||
|
|
||||||
|
# Stored Trees, Dominions, and Homomorphisms
|
||||||
|
Tree0/
|
||||||
|
Tree1/
|
||||||
|
Tree2/
|
||||||
|
Tree3/
|
||||||
|
test2.py
|
||||||
|
|
||||||
|
# Stored trees and dominions
|
||||||
|
output/
|
21
LICENSE
Normal file
21
LICENSE
Normal file
|
@ -0,0 +1,21 @@
|
||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) 2025 Charlotte Aten
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
80
README.md
Normal file
80
README.md
Normal file
|
@ -0,0 +1,80 @@
|
||||||
|
# Discrete neural nets
|
||||||
|
This repository contains code and examples of implementing the notion of a
|
||||||
|
discrete neural net and polymorphic learning in Python. For more information on
|
||||||
|
these notions, see
|
||||||
|
[the corresponding preprint](https://arxiv.org/abs/2308.00677) on the arXiv.
|
||||||
|
|
||||||
|
### Project structure
|
||||||
|
The scripts that define basic components of the system are in the `src` folder.
|
||||||
|
These are:
|
||||||
|
|
||||||
|
* `arithmetic_operations.py`: Definitions of arithmetic operations modulo some
|
||||||
|
positive integer. These are used to test the basic functionality of the
|
||||||
|
`NeuralNet` class.
|
||||||
|
* `dominion.py`: Tools for creating dominions, a combinatorial object used in
|
||||||
|
the definition of the dominion polymorphisms in `polymorphisms.py`.
|
||||||
|
* `dominion_setup.py`: Utilities for creating files of trees, dominions with
|
||||||
|
those trees as constraint graphs, and the data for the corresponding
|
||||||
|
polymorphisms.
|
||||||
|
* `graphs.py`: Utilities for creating and storing simple graphs, including
|
||||||
|
randomly-generated trees.
|
||||||
|
* `mnist_training_binary.py`: Describes how to manufacture binary relations
|
||||||
|
from the MNIST dataset which can be passed as arguments into the
|
||||||
|
polymorphisms in `polymorphisms.py`.
|
||||||
|
* `neural_net.py`: Definition of the `NeuralNet` class, including feeding
|
||||||
|
forward and learning.
|
||||||
|
* `operations.py`: Definitions pertaining to the `Operation` class, whose
|
||||||
|
objects are to be thought of as operations in the sense of universal
|
||||||
|
algebra/model theory.
|
||||||
|
* `polymorphisms.py`: Definitions of polymorphisms of the Hamming graph, as
|
||||||
|
well as a neighbor function for the learning algorithm implemented in
|
||||||
|
`neural_net.py`.
|
||||||
|
* `random_neural_net.py`: Tools for making `NeuralNet` objects with
|
||||||
|
randomly-chosen architectures and activation functions.
|
||||||
|
* `relations.py`: Definitions pertaining to the `Relation` class, whose objects
|
||||||
|
are relations in the sense of model theory.
|
||||||
|
|
||||||
|
The scripts that run various tests and example applications of the system are
|
||||||
|
in the `tests` folder. These are:
|
||||||
|
|
||||||
|
* `src.py`: This script allows horizontal imports from the sibling `src`
|
||||||
|
folder. (That is, it adds it to the system `PATH` variable.)
|
||||||
|
* `test_binary_relation_polymorphisms`: Examples of the basic functionality for
|
||||||
|
the polymorphisms defined in `polymorphisms.py` when applied to binary
|
||||||
|
relations.
|
||||||
|
* `test_dominion.py`: Examples of constructing and displaying dominions as
|
||||||
|
defined in `dominion.py`.
|
||||||
|
* `test_dominion_setup.py`: Create trees and dominions for use with dominion
|
||||||
|
polymorphisms.
|
||||||
|
* `test_graphs.py`: Examples of creating graphs (including random trees) as
|
||||||
|
defined in `graphs.py`.
|
||||||
|
* `test_mnist_training_binary.py`: Verification that MNIST training data is
|
||||||
|
being loaded correctly from the training dataset.
|
||||||
|
* `test_neural_net.py`: Examples of creating `NeuralNet`s using activation
|
||||||
|
functions from `arithmetic_operations.py` and the `RandomOperation` from
|
||||||
|
`random_neural_net.py`.
|
||||||
|
* `test_relations.py`: Examples of the basic functionality for the `Relation`s
|
||||||
|
defined in `relations.py`.
|
||||||
|
|
||||||
|
### Environment
|
||||||
|
This project should run on any Python3 environment without configuration. It
|
||||||
|
assumes that there is a project folder which contains these subdirectories:
|
||||||
|
`src` (for source code), `tests` (for tests of basic functionality and
|
||||||
|
examples), and `output` (for output json, image files, etc.). The `output`
|
||||||
|
folder is in the `.gitignore`, so it should not be seen on cloning. It will be
|
||||||
|
created when a script that needs to use it is run.
|
||||||
|
|
||||||
|
### TODO
|
||||||
|
* Reincorporate the polymorphisms for the higher-arity analogues of the
|
||||||
|
Hamming graph which Lillian coded.
|
||||||
|
|
||||||
|
### Thanks
|
||||||
|
Thanks to all the contributors to the original incarnation of this repository:
|
||||||
|
* Rachel Dennis
|
||||||
|
* Hussein Khalil
|
||||||
|
* Lillian Stolberg
|
||||||
|
* Kevin Xue
|
||||||
|
* Andrey Yao
|
||||||
|
|
||||||
|
Thanks also to the University of Rochester and the University of Colorado
|
||||||
|
Boulder for supporting this project.
|
63
src/arithmetic_operations.py
Normal file
63
src/arithmetic_operations.py
Normal file
|
@ -0,0 +1,63 @@
|
||||||
|
"""
|
||||||
|
Arithmetic operations for use as neural net activation functions
|
||||||
|
"""
|
||||||
|
from operations import Operation
|
||||||
|
|
||||||
|
|
||||||
|
class ModularAddition(Operation):
|
||||||
|
"""
|
||||||
|
Addition modulo a positive integer.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, order, cache_values=False):
|
||||||
|
"""
|
||||||
|
Create the addition operation modulo a given positive integer.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
order (int): The modulus for performing addition.
|
||||||
|
cache_values (bool): Whether to memoize the operation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Complain if the order is nonpositive.
|
||||||
|
assert order > 0
|
||||||
|
Operation.__init__(self, 2, lambda *x: (x[0] + x[1]) % order,
|
||||||
|
cache_values)
|
||||||
|
|
||||||
|
|
||||||
|
class ModularMultiplication(Operation):
|
||||||
|
"""
|
||||||
|
Multiplication modulo a positive integer.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, order, cache_values=False):
|
||||||
|
"""
|
||||||
|
Create the multiplication operation modulo a given positive integer.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
order (int): The modulus for performing multiplication.
|
||||||
|
cache_values (bool): Whether to memoize the operation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Complain if the order is nonpositive.
|
||||||
|
assert order > 0
|
||||||
|
Operation.__init__(self, 2, lambda *x: (x[0] * x[1]) % order,
|
||||||
|
cache_values)
|
||||||
|
|
||||||
|
|
||||||
|
class ModularNegation(Operation):
|
||||||
|
"""
|
||||||
|
Negation modulo a positive integer.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, order, cache_values=False):
|
||||||
|
"""
|
||||||
|
Create the negation operation modulo a given positive integer.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
order (int): The modulus for performing negation.
|
||||||
|
cache_values (bool): Whether to memoize the operation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Complain if the order is nonpositive.
|
||||||
|
assert order > 0
|
||||||
|
Operation.__init__(self, 1, lambda *x: (-x) % order, cache_values)
|
150
src/dominion.py
Normal file
150
src/dominion.py
Normal file
|
@ -0,0 +1,150 @@
|
||||||
|
"""
|
||||||
|
Dominion
|
||||||
|
|
||||||
|
Tools for creating 2-dimensional dominions
|
||||||
|
"""
|
||||||
|
import random, pathlib
|
||||||
|
from matplotlib import pyplot as plt
|
||||||
|
import output
|
||||||
|
|
||||||
|
|
||||||
|
class Dominion:
|
||||||
|
"""
|
||||||
|
A dominion, which is a square array of entries with the property that every
|
||||||
|
2 by 2 subarray has at most two distinct entries. Higher-dimensional
|
||||||
|
analogues may be implemented in the future.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
labels (frozenset): The labels which may appear as entries in the
|
||||||
|
dominion.
|
||||||
|
array (tuple of tuple): The array of entries belonging to the dominion.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, labels, array):
|
||||||
|
"""
|
||||||
|
Create a dominion with a given array of labels.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
labels (iterable): The labels which may appear as entries in the
|
||||||
|
dominion.
|
||||||
|
array (iterable of iterable): The array of entries belonging to the
|
||||||
|
dominion.
|
||||||
|
"""
|
||||||
|
|
||||||
|
self.labels = frozenset(labels)
|
||||||
|
self.array = tuple(tuple(row) for row in array)
|
||||||
|
|
||||||
|
def show(self):
|
||||||
|
"""
|
||||||
|
Display a textual representation of the dominion in question.
|
||||||
|
"""
|
||||||
|
|
||||||
|
for row in self.array:
|
||||||
|
print(row)
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return "A Dominion of size {} with {} possible labels.".format(
|
||||||
|
len(self.array), len(self.labels))
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
labels = '{' + ', '.join(map(str, self.labels)) + '}'
|
||||||
|
return "A Dominion of size {} with labels from {}.".format(
|
||||||
|
len(self.array), labels)
|
||||||
|
|
||||||
|
def draw(self, color_map, filename):
|
||||||
|
"""
|
||||||
|
Render an image from a given dominion and color map.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
color_map (string): The name of a color map.
|
||||||
|
filename (string): The name of the resulting file.
|
||||||
|
"""
|
||||||
|
|
||||||
|
plt.imsave(output.path + '//{}.png'.format(filename), \
|
||||||
|
self.array, cmap=color_map)
|
||||||
|
|
||||||
|
|
||||||
|
def new_row(row, labels, constraint_graph=None):
|
||||||
|
"""
|
||||||
|
Construct a new row for a dominion with a given collection of labels and a
|
||||||
|
graph constraining which labels can appear together.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
row (tuple): A tuple of labels representing a row of a dominion.
|
||||||
|
labels (iterable): The pixel labels used in the dominion. The entries
|
||||||
|
of `row` should come from this.
|
||||||
|
constraint_graph (Graph): The graph determining which labels can appear
|
||||||
|
next to each other. The vertices of `constraint_graph` should be
|
||||||
|
the entries of `labels`. The default value `None` behaves as though
|
||||||
|
the graph is the complete graph on the vertex set whose members are
|
||||||
|
the entries of `labels'.
|
||||||
|
Returns:
|
||||||
|
tuple: A new row which is permitted to follow `row` in a dominion with
|
||||||
|
the given labels and constraints.
|
||||||
|
"""
|
||||||
|
|
||||||
|
partial_row = []
|
||||||
|
n = len(row)
|
||||||
|
for i in range(n):
|
||||||
|
if i == 0:
|
||||||
|
left_candidates = frozenset((row[0],))
|
||||||
|
right_candidates = frozenset((row[0], row[1]))
|
||||||
|
elif i == n - 1:
|
||||||
|
left_candidates = frozenset(
|
||||||
|
(row[n - 2], row[n - 1], partial_row[n - 2]))
|
||||||
|
right_candidates = frozenset((row[n - 1],))
|
||||||
|
else:
|
||||||
|
left_candidates = frozenset(
|
||||||
|
(row[i - 1], row[i], partial_row[i - 1]))
|
||||||
|
right_candidates = frozenset((row[i], row[i + 1]))
|
||||||
|
# If either side already has two candidates, we must choose from the
|
||||||
|
# intersection of the two sides.
|
||||||
|
candidates = left_candidates.intersection(right_candidates)
|
||||||
|
# Otherwise, it must be that both the left and right sides have only a
|
||||||
|
# single member. In this case, we may also choose an adjacent vertex on
|
||||||
|
# the constraint graph.
|
||||||
|
if len(left_candidates) == 1 and len(right_candidates) == 1:
|
||||||
|
if constraint_graph is None:
|
||||||
|
candidates = labels
|
||||||
|
else:
|
||||||
|
candidates = candidates.union(constraint_graph.neighbors(
|
||||||
|
tuple(candidates)[0]))
|
||||||
|
# Add a random candidate.
|
||||||
|
random_candidate = random.sample(list(candidates), 1)
|
||||||
|
partial_row += random_candidate
|
||||||
|
return tuple(partial_row)
|
||||||
|
|
||||||
|
|
||||||
|
def random_dominion(size, labels, constraint_graph=None):
|
||||||
|
"""
|
||||||
|
Create a random dominion given a size, collection of labels, and constraint
|
||||||
|
graph.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
size (int): The number of rows (and columns) of the dominion.
|
||||||
|
labels (iterable): The pixel labels used in the dominion. The entries
|
||||||
|
of `row` should come from this.
|
||||||
|
constraint_graph (Graph): The graph determining which labels can appear
|
||||||
|
next to each other. The vertices of `constraint_graph` should be
|
||||||
|
the entries of `labels`. The default value `None` behaves as though
|
||||||
|
the graph is the complete graph on the vertex set whose members are
|
||||||
|
the entries of `labels'.
|
||||||
|
Returns:
|
||||||
|
Dominion: The randomly-generated dominion.
|
||||||
|
"""
|
||||||
|
|
||||||
|
partial_dominion = [[random.choice(labels)]]
|
||||||
|
for _ in range(size - 1):
|
||||||
|
if constraint_graph is None:
|
||||||
|
new_label = random.choice(labels)
|
||||||
|
else:
|
||||||
|
new_label = random.choice(
|
||||||
|
tuple(constraint_graph.neighbors(
|
||||||
|
partial_dominion[0][-1])) + (partial_dominion[0][-1],))
|
||||||
|
partial_dominion[0].append(new_label)
|
||||||
|
|
||||||
|
for _ in range(size - 1):
|
||||||
|
next_row = new_row(partial_dominion[-1], labels, constraint_graph)
|
||||||
|
partial_dominion.append(next_row)
|
||||||
|
|
||||||
|
return Dominion(labels, partial_dominion)
|
102
src/dominion_setup.py
Normal file
102
src/dominion_setup.py
Normal file
|
@ -0,0 +1,102 @@
|
||||||
|
"""
|
||||||
|
Dominion setup
|
||||||
|
|
||||||
|
Create files describing trees, dominions, and corresponding polymorphisms
|
||||||
|
"""
|
||||||
|
import random, json
|
||||||
|
import output
|
||||||
|
from graphs import random_tree, load_graph_from_file
|
||||||
|
from dominion import random_dominion
|
||||||
|
from relations import random_relation, random_adjacent_relation, Relation
|
||||||
|
|
||||||
|
|
||||||
|
def grow_forest(filename, num_of_trees, num_of_vertices):
|
||||||
|
"""
|
||||||
|
Add a specified number of trees to a given file.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
filename (str): The name of the output file.
|
||||||
|
num_of_trees (int): The number of trees to be created.
|
||||||
|
num_of_vertices (int): How many vertices each of these trees should
|
||||||
|
have.
|
||||||
|
"""
|
||||||
|
|
||||||
|
for _ in range(num_of_trees):
|
||||||
|
T = random_tree(range(num_of_vertices))
|
||||||
|
T.write_to_file(filename)
|
||||||
|
|
||||||
|
|
||||||
|
def build_dominions(tree_filename, dominion_filename, num_of_dominions,
|
||||||
|
dominion_size):
|
||||||
|
"""
|
||||||
|
Use the trees stored in a given file as constraint graphs for creating
|
||||||
|
dominions. These dominions are then stored in their own file, along with a
|
||||||
|
note about which tree was used to create them.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
tree_filename (str): The name of the file where trees are stored.
|
||||||
|
dominion_filename (str): The name of the output file.
|
||||||
|
num_of_dominions (int): The number of dominions to be created.
|
||||||
|
dominion_size (int): The number of rows (and columns) of the dominions.
|
||||||
|
"""
|
||||||
|
|
||||||
|
with open(output.path + '//{}.json'.format(tree_filename), 'r') \
|
||||||
|
as read_file:
|
||||||
|
num_of_trees = sum(1 for _ in read_file)
|
||||||
|
for _ in range(num_of_dominions):
|
||||||
|
tree_number = random.randrange(num_of_trees)
|
||||||
|
T = load_graph_from_file(tree_filename, tree_number)
|
||||||
|
D = random_dominion(dominion_size, tuple(T.vertices), T)
|
||||||
|
with open(output.path + '//{}.json'.format(dominion_filename), 'a') \
|
||||||
|
as write_file:
|
||||||
|
json.dump((tree_number, D.array), write_file)
|
||||||
|
write_file.write('\n')
|
||||||
|
|
||||||
|
|
||||||
|
def find_homomorphisms(tree_filename, homomorphism_filename, universe_size):
|
||||||
|
"""
|
||||||
|
Produce a file detailing homomorphisms from a given family of trees to a
|
||||||
|
given Hamming graph.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
tree_filename (str): The name of the file where trees are stored.
|
||||||
|
homomorphism_filename (str): The name of the output file.
|
||||||
|
universe_size (int): The number of elements in the universe of the
|
||||||
|
relations to be produced.
|
||||||
|
"""
|
||||||
|
|
||||||
|
with open(output.path + '//{}.json'.format(tree_filename), 'r') \
|
||||||
|
as read_file:
|
||||||
|
num_of_trees = sum(1 for _ in read_file)
|
||||||
|
for tree_number in range(num_of_trees):
|
||||||
|
T = load_graph_from_file(tree_filename, tree_number)
|
||||||
|
# Choose a root of the tree and build a list of (parent, child) node
|
||||||
|
# pairs.
|
||||||
|
unexplored_vertices = list(T.vertices)
|
||||||
|
next_vertices_to_check = [unexplored_vertices.pop()]
|
||||||
|
explored_vertices = set()
|
||||||
|
pairs = []
|
||||||
|
while unexplored_vertices:
|
||||||
|
next_vertex = next_vertices_to_check.pop()
|
||||||
|
new_neighbors = frozenset(
|
||||||
|
T.neighbors(next_vertex)).difference(explored_vertices)
|
||||||
|
for neighbor in new_neighbors:
|
||||||
|
pairs.append((next_vertex, neighbor))
|
||||||
|
unexplored_vertices.remove(neighbor)
|
||||||
|
next_vertices_to_check.append(neighbor)
|
||||||
|
explored_vertices.add(next_vertex)
|
||||||
|
# Create a list whose entries will become the images of each label
|
||||||
|
# under the homomorphism. Initialize every spot to 0.
|
||||||
|
homomorphism_values = len(T.vertices)*[0]
|
||||||
|
homomorphism_values[pairs[0][0]] = random_relation(universe_size)
|
||||||
|
# Starting all homomorphisms at empty relation for an experiment.
|
||||||
|
# homomorphism_values[pairs[0][0]] = Relation([], 28, 2)
|
||||||
|
for (parent, child) in pairs:
|
||||||
|
homomorphism_values[child] = \
|
||||||
|
random_adjacent_relation(homomorphism_values[parent])
|
||||||
|
homomorphism_values = tuple(tuple(rel.tuples)
|
||||||
|
for rel in homomorphism_values)
|
||||||
|
with open(output.path + '//{}.json'.format(homomorphism_filename),
|
||||||
|
'a') as write_file:
|
||||||
|
json.dump((tree_number, homomorphism_values), write_file)
|
||||||
|
write_file.write('\n')
|
130
src/graphs.py
Normal file
130
src/graphs.py
Normal file
|
@ -0,0 +1,130 @@
|
||||||
|
"""
|
||||||
|
Graphs and trees
|
||||||
|
"""
|
||||||
|
import itertools, json, random
|
||||||
|
import output
|
||||||
|
|
||||||
|
|
||||||
|
def take_other_element(p, e):
|
||||||
|
"""
|
||||||
|
Given a pair {a,e} and an element e, return a.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
p (frozenset): The pair of elements, one of which is meant to be `e`.
|
||||||
|
e (Object): The element in question.
|
||||||
|
"""
|
||||||
|
|
||||||
|
for x in p:
|
||||||
|
if x != e:
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Graph:
|
||||||
|
"""
|
||||||
|
A simple graph. That is, a set of vertices with unordered pairs of vertices
|
||||||
|
as edges.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
vertices (frozenset): The vertices of the graph.
|
||||||
|
edges (frozenset of frozenset): The unordered pairs of vertices
|
||||||
|
constituting the edges of the graph.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, vertices=frozenset(), edges=frozenset()):
|
||||||
|
"""
|
||||||
|
Create a graph with given vertices and edges.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
vertices (iterable): The vertices of the graph.
|
||||||
|
edges (iterable of iterable): The unordered pairs of vertices
|
||||||
|
constituting the edges of the graph.
|
||||||
|
"""
|
||||||
|
|
||||||
|
self.vertices = frozenset(vertices)
|
||||||
|
self.edges = frozenset(frozenset(edge) for edge in edges)
|
||||||
|
|
||||||
|
def neighbors(self, vertex):
|
||||||
|
"""
|
||||||
|
Construct an iterator through the neighbors of a vertex in the graph.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
vertex (Object): The vertex for which we find neighbors.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
iterator: The neighbors of the vertex in question.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return (take_other_element(edge, vertex) \
|
||||||
|
for edge in self.edges if vertex in edge)
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
|
||||||
|
return "A Graph with {} vertices and {} edges.".format( \
|
||||||
|
len(self.vertices), len(self.edges))
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
|
||||||
|
vertices = '{' + ', '.join(map(str, self.vertices)) + '}'
|
||||||
|
edges = '{' + ', '.join('{' + ', '.join(map(str, edge)) + '}' \
|
||||||
|
for edge in self.edges) + '}'
|
||||||
|
return "A Graph with vertex set {} and edge set {}.".format( \
|
||||||
|
vertices, edges)
|
||||||
|
|
||||||
|
def write_to_file(self, filename):
|
||||||
|
"""
|
||||||
|
Write a Graph to a json file. A file with the appropriate name will be
|
||||||
|
created if it doesn't already exist. Note that the target directory
|
||||||
|
does need to exist before this method is called. The Graph will be
|
||||||
|
appended to the next line of the file if it already exists.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
filename (str): The name of the output file.
|
||||||
|
"""
|
||||||
|
|
||||||
|
with open(output.path + '//{}.json'.format(filename), 'a') \
|
||||||
|
as write_file:
|
||||||
|
# The Graph is rendered as a pair of lists, since frozensets are
|
||||||
|
# not serializable in json.
|
||||||
|
json.dump((tuple(self.vertices), tuple(map(tuple, self.edges))), \
|
||||||
|
write_file)
|
||||||
|
write_file.write('\n')
|
||||||
|
|
||||||
|
|
||||||
|
def load_graph_from_file(filename, graph_number):
|
||||||
|
"""
|
||||||
|
Create a Graph by reading from a json file.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
filename (str): The name of the json file containing the Graph.
|
||||||
|
graph_number (int): The line number in the file describing the
|
||||||
|
desired Graph.
|
||||||
|
"""
|
||||||
|
|
||||||
|
with open(output.path + '//{}.json'.format(filename), 'r') as read_file:
|
||||||
|
unprocessed_graph = \
|
||||||
|
itertools.islice(read_file, graph_number, graph_number+1).__next__()
|
||||||
|
return Graph(*json.loads(unprocessed_graph))
|
||||||
|
|
||||||
|
|
||||||
|
def random_tree(vertices):
|
||||||
|
"""
|
||||||
|
Create a random tree as a Graph object.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
vertices (iterable): The collection of vertices in the tree.
|
||||||
|
Should be nonempty.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Graph: The randomly-created tree.
|
||||||
|
"""
|
||||||
|
|
||||||
|
unplaced_vertices = set(vertices)
|
||||||
|
root_vertex = unplaced_vertices.pop()
|
||||||
|
placed_vertices = [root_vertex]
|
||||||
|
edges = set()
|
||||||
|
while unplaced_vertices:
|
||||||
|
new_vertex = unplaced_vertices.pop()
|
||||||
|
old_vertex = random.choice(placed_vertices)
|
||||||
|
edges.add((old_vertex, new_vertex))
|
||||||
|
placed_vertices.append(new_vertex)
|
||||||
|
return Graph(vertices, edges)
|
193
src/mnist_training_binary.py
Normal file
193
src/mnist_training_binary.py
Normal file
|
@ -0,0 +1,193 @@
|
||||||
|
"""
|
||||||
|
Modified MNIST training set for binary image classification
|
||||||
|
"""
|
||||||
|
import json
|
||||||
|
import pathlib
|
||||||
|
from relations import Relation, random_relation
|
||||||
|
from itertools import product
|
||||||
|
|
||||||
|
|
||||||
|
def import_mnist_data(data_type):
|
||||||
|
"""
|
||||||
|
Create an iterator for MNIST data. The resulting JSON files have each line
|
||||||
|
representing a greyscale image of a handwritten digit. Each line is a
|
||||||
|
dictionary whose keys are integers between 1 and 255, or the string
|
||||||
|
'label'. The values associated to the integer keys are lists of the
|
||||||
|
coordinates at which the greyscale value for the MNIST image is equal to
|
||||||
|
the key. For example, if the greyscale value 25 is found at coordinate
|
||||||
|
[2,14], then the key 25 would be associated to a list of pairs, one of
|
||||||
|
which is [2,14]. Any pairs not belonging to a value in the dictionary are
|
||||||
|
assumed to be assigned greyscale value 0. The 'label' key has an integer
|
||||||
|
value between 0 and 9, indicated the intended handwritten digit for the
|
||||||
|
corresponding image.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
data_type (str): Either 'train' or 'test', depending on which data one
|
||||||
|
would like to convert.
|
||||||
|
|
||||||
|
Yields:
|
||||||
|
dict: The dictionary of data specifying a greyscale image and its
|
||||||
|
intended handwritten digit.
|
||||||
|
"""
|
||||||
|
|
||||||
|
with open(str(pathlib.Path.cwd().parent) + \
|
||||||
|
'//..//JSONforMNIST//{}_data.json'.format(data_type), 'r') as read_file:
|
||||||
|
for line in read_file:
|
||||||
|
data = json.loads(line)
|
||||||
|
# By default, all the integer keys in the dictionary returned from
|
||||||
|
# the JSON file will be converted to strings. Let's undo this.
|
||||||
|
cleaned_data = \
|
||||||
|
{int(key): data[key] for key in data if key != 'label'}
|
||||||
|
cleaned_data['label'] = data['label']
|
||||||
|
yield cleaned_data
|
||||||
|
|
||||||
|
|
||||||
|
def greyscale_to_binary(image, cutoff=127):
|
||||||
|
"""
|
||||||
|
Convert a greyscale image from the MNIST training set to a binary relation.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
image (dict): A dictionary representing a greyscale image as described
|
||||||
|
in `import_mnist_data`.
|
||||||
|
cutoff (int): Any pixel coordinates in `image` which are over this
|
||||||
|
value will be taken to be in the relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Relation: A binary relation on a universe of size 28 whose pairs are
|
||||||
|
those coordinates from `image` which are at least as large as
|
||||||
|
`cutoff`.
|
||||||
|
"""
|
||||||
|
|
||||||
|
pairs = []
|
||||||
|
for val in range(cutoff, 256):
|
||||||
|
if val in image:
|
||||||
|
pairs += image[val]
|
||||||
|
return Relation(pairs, 28)
|
||||||
|
|
||||||
|
|
||||||
|
def mnist_binary_relations(data_type, cutoff=127):
|
||||||
|
"""
|
||||||
|
Create an iterator for binary relations coming from MNIST data.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
data_type (str): Either 'train' or 'test', depending on which data one
|
||||||
|
would like to examine.
|
||||||
|
cutoff: Any pixel coordinates in a greyscale image which are over this
|
||||||
|
value will be taken to be in the corresponding relation.
|
||||||
|
|
||||||
|
Yields:
|
||||||
|
tuple: A binary relation corresponding to a greyscale image from an
|
||||||
|
MNIST dataset and its corresponding integer label.
|
||||||
|
"""
|
||||||
|
|
||||||
|
data = import_mnist_data(data_type)
|
||||||
|
for dic in data:
|
||||||
|
yield greyscale_to_binary(dic, cutoff), dic['label']
|
||||||
|
|
||||||
|
|
||||||
|
def build_training_data(pairs, data_type, cutoff=127):
|
||||||
|
"""
|
||||||
|
Create an iterable of pairs for training or testing a discrete neural net
|
||||||
|
using the MNIST datasets. Either the train data or the test data from MNIST
|
||||||
|
may be used.
|
||||||
|
|
||||||
|
The following values provided in `pairs` will be substituted for binary
|
||||||
|
relations:
|
||||||
|
0, 1, 2, 3, 4, 5, 6, 7, 8, or 9: These `int`s will be replaced with a
|
||||||
|
corresponding handwritten digit from MNIST dataset.
|
||||||
|
'Empty', 'Full': These strings will be replaced with the empty binary
|
||||||
|
relation and the full binary relation, respectively.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
pairs (iterable of tuple): A sequence of pairs, the first entry being a
|
||||||
|
tuple of inputs and the second entry being a tuple of outputs. It
|
||||||
|
is assumed that all the first-entry tuples have the same length,
|
||||||
|
which is the number of input nodes in a neural net to be
|
||||||
|
trained/tested on such data. Similarly, the second-entry tuples
|
||||||
|
are assumed to have the same length, which is the number of output
|
||||||
|
nodes in a neural net to be trained/tested on such data. See the
|
||||||
|
description above for possible values that these tuples may
|
||||||
|
contain.
|
||||||
|
data_type (str): Either 'train' or 'test', depending on which data one
|
||||||
|
would like to examine.
|
||||||
|
cutoff (int): Any pixel coordinates in a greyscale image which are over
|
||||||
|
this value will be taken to be in the corresponding relation.
|
||||||
|
|
||||||
|
Yields:
|
||||||
|
tuple: A pair whose first entry is a dictionary indicating that a tuple
|
||||||
|
of binary relations is to be fed into a discrete neural net as the
|
||||||
|
inputs `x0`, `x1`, `x2`, etc. and whose second entry is a tuple of
|
||||||
|
binary relations which should appear as the corresponding outputs.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Create a dictionary for the substitutions described above. The images
|
||||||
|
# corresponding to the digits will be updated dynamically from the MNIST
|
||||||
|
# training data.
|
||||||
|
substitution_dic = {i: None for i in range(10)}
|
||||||
|
substitution_dic['Empty'] = Relation(tuple(), 28, 2)
|
||||||
|
substitution_dic['Full'] = Relation(product(range(28), repeat=2), 28)
|
||||||
|
substitution_dic['One pixel'] = Relation(((0, 0),), 28)
|
||||||
|
# Load the MNIST data
|
||||||
|
data = mnist_binary_relations(data_type, cutoff)
|
||||||
|
# Initialize the images corresponding to the digits.
|
||||||
|
for i in range(10):
|
||||||
|
# For each digit, we try to find a candidate image.
|
||||||
|
while not substitution_dic[i]:
|
||||||
|
# We pull the next image from MNIST.
|
||||||
|
new_image = next(data)
|
||||||
|
# If an image for that digit hasn't been found yet, regardless of
|
||||||
|
# whether it was the one we intended to look for, that image will
|
||||||
|
# be added as the one representing its digit in `substitution_dic`.
|
||||||
|
if not substitution_dic[new_image[1]]:
|
||||||
|
substitution_dic[new_image[1]] = new_image[0]
|
||||||
|
for pair in pairs:
|
||||||
|
# Update one of the digits using the next values from MNIST.
|
||||||
|
new_image = next(data)
|
||||||
|
substitution_dic[new_image[1]] = new_image[0]
|
||||||
|
# Choose a new random image.
|
||||||
|
substitution_dic['Random'] = random_relation(28)
|
||||||
|
yield {'x{}'.format(i): substitution_dic[pair[0][i]]
|
||||||
|
for i in range(len(pair[0]))}, \
|
||||||
|
tuple(substitution_dic[pair[1][i]] for i in range(len(pair[1])))
|
||||||
|
|
||||||
|
|
||||||
|
def binary_mnist_zero_one(quantity_of_zeroes, data_type, \
|
||||||
|
quantity_of_ones=None, cutoff=127):
|
||||||
|
"""
|
||||||
|
Create a data set for training a discrete neural net to recognize
|
||||||
|
handwritten zeroes and ones. Zeroes are labeled with the empty relation and
|
||||||
|
ones are labeled with the full relation.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
quantity_of_zeroes (int): The number of examples of handwritten zeroes
|
||||||
|
to show.
|
||||||
|
data_type (str): Either 'train' or 'test', depending on which data one
|
||||||
|
would like to examine.
|
||||||
|
quantity_of_ones (int): The number of examples of handwritten ones to
|
||||||
|
show.
|
||||||
|
cutoff (int): Any pixel coordinates in a greyscale image which are over
|
||||||
|
this value will be taken to be in the corresponding relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
iterable: An iterable of training data where handwritten zeroes and
|
||||||
|
ones are mapped to full and empty relations.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# If the number of ones to use is not specified, it is assumed to be the
|
||||||
|
# same as the number of zeroes.
|
||||||
|
if quantity_of_ones is None:
|
||||||
|
quantity_of_ones = quantity_of_zeroes
|
||||||
|
pairs = [((0,), ('Empty',)) for _ in range(quantity_of_zeroes)]
|
||||||
|
pairs += [((1,), ('Full',)) for _ in range(quantity_of_ones)]
|
||||||
|
return build_training_data(pairs, data_type, cutoff)
|
||||||
|
|
||||||
|
|
||||||
|
def experiment_mnist_zero_one(quantity_of_zeroes, data_type, \
|
||||||
|
quantity_of_ones=None, cutoff=127):
|
||||||
|
# If the number of ones to use is not specified, it is assumed to be the
|
||||||
|
# same as the number of zeroes.
|
||||||
|
if quantity_of_ones is None:
|
||||||
|
quantity_of_ones = quantity_of_zeroes
|
||||||
|
pairs = [(('Random',), (0,)) for _ in range(quantity_of_zeroes)]
|
||||||
|
pairs += [(('Random',), (1,)) for _ in range(quantity_of_ones)]
|
||||||
|
return build_training_data(pairs, data_type, cutoff)
|
207
src/neural_net.py
Normal file
207
src/neural_net.py
Normal file
|
@ -0,0 +1,207 @@
|
||||||
|
"""
|
||||||
|
Discrete neural net
|
||||||
|
"""
|
||||||
|
import random
|
||||||
|
from copy import copy
|
||||||
|
import numpy
|
||||||
|
|
||||||
|
|
||||||
|
class Neuron:
|
||||||
|
"""
|
||||||
|
A neuron in a neural net.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
activation_func (Operation): The activation function of the neuron.
|
||||||
|
inputs (list of Neuron): The neurons which act as inputs to the neuron
|
||||||
|
in question.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, activation_func, inputs):
|
||||||
|
"""
|
||||||
|
Construct a neuron for use in a neural net.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
activation_func (Operation): The activation function of the neuron.
|
||||||
|
inputs ((tuple of str) or (list of Neuron)): The neurons which act
|
||||||
|
as inputs to the neuron in question.
|
||||||
|
"""
|
||||||
|
|
||||||
|
self.activation_func = activation_func
|
||||||
|
self.inputs = inputs
|
||||||
|
|
||||||
|
|
||||||
|
class Layer:
|
||||||
|
"""
|
||||||
|
A layer in a neural net.
|
||||||
|
|
||||||
|
Attribute:
|
||||||
|
neurons ((tuple of str) or (list of Neuron)): If `neurons` is a tuple
|
||||||
|
of str then we take the corresponding Layer object to be an input
|
||||||
|
layer for a neural net, with the entries of `neurons` being
|
||||||
|
distinct variable names for the arguments to the neural net.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, neurons):
|
||||||
|
"""
|
||||||
|
Construct a layer with a given collection of neurons.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
neurons ((tuple of str) or (list of Neuron)): If `neurons` is a
|
||||||
|
tuple of str then we take the corresponding Layer object to be
|
||||||
|
an input layer for a neural net, with the entries of `neurons`
|
||||||
|
being distinct variable names for the arguments to the neural
|
||||||
|
net.
|
||||||
|
"""
|
||||||
|
|
||||||
|
self.neurons = neurons
|
||||||
|
|
||||||
|
|
||||||
|
def zero_one_loss(x, y):
|
||||||
|
"""
|
||||||
|
Compute the 0-1 loss for a given pair of tuples.
|
||||||
|
The input tuples should have the same length.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
x (tuple): A tuple of outputs from feeding forward through a neural
|
||||||
|
net.
|
||||||
|
y (tuple): A tuple of target outputs from a training set.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
int: Either 0 (the tuples agree) or 1 (the tuples do not agree).
|
||||||
|
"""
|
||||||
|
|
||||||
|
return 1 - (x == y)
|
||||||
|
|
||||||
|
|
||||||
|
class NeuralNet:
|
||||||
|
"""
|
||||||
|
A (discrete) neural net.
|
||||||
|
|
||||||
|
Attribute:
|
||||||
|
architecture (list of Layer): The layers of the neural net, starting
|
||||||
|
with the input layer, whose neurons should be a list of distinct
|
||||||
|
variable names. Later layers should consist of Neurons carrying
|
||||||
|
activation functions.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, architecture):
|
||||||
|
"""
|
||||||
|
Construct a neural net with a given architecture.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
architecture (list of Layer): The layers of the neural net,
|
||||||
|
starting with the input layer, whose neurons should be a list
|
||||||
|
of distinct variable names. Later layers should consist of
|
||||||
|
Neurons carrying activation functions.
|
||||||
|
"""
|
||||||
|
|
||||||
|
self.architecture = architecture
|
||||||
|
|
||||||
|
def feed_forward(self, x):
|
||||||
|
"""
|
||||||
|
Feed the values `x` forward through the neural net.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
x (dict of str: object): An assignment of variable names to values.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
tuple: The current values of each of the output layer neurons after
|
||||||
|
feeding forward.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# A copy is made so as to not modify the training data.
|
||||||
|
current_vals = copy(x)
|
||||||
|
for layer in self.architecture[1:]:
|
||||||
|
for neuron in layer.neurons:
|
||||||
|
tup = tuple(current_vals[input_neuron] for
|
||||||
|
input_neuron in neuron.inputs)
|
||||||
|
current_vals[neuron] = neuron.activation_func(*tup)
|
||||||
|
return tuple(current_vals[neuron] for
|
||||||
|
neuron in self.architecture[-1].neurons)
|
||||||
|
|
||||||
|
def empirical_loss(self, training_pairs, loss_func=zero_one_loss):
|
||||||
|
"""
|
||||||
|
Calculate the current empirical loss of the neural net with respect to
|
||||||
|
the training pairs and loss function.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
training_pairs (iterable): Training pairs (x,y) where x is a
|
||||||
|
dictionary of inputs and y is a tuple of outputs.
|
||||||
|
loss_func (function): The loss function to use for training. The
|
||||||
|
default is the 0-1 loss.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
numpy.float64: The empirical loss. This is a float between 0 and 1,
|
||||||
|
with 0 meaning our model is perfect on the training set and 1
|
||||||
|
being complete failure.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Create a tuple of loss function values for each pair in our training
|
||||||
|
# set, then average them.
|
||||||
|
return numpy.average(tuple(loss_func(self.feed_forward(x), y) for
|
||||||
|
(x, y) in training_pairs))
|
||||||
|
|
||||||
|
def training_step(self, training_pairs, neighbor_func,
|
||||||
|
loss_func=zero_one_loss):
|
||||||
|
"""
|
||||||
|
Perform one step of training the neural net using the given training
|
||||||
|
pairs, neighbor function, and loss function. At each step a random
|
||||||
|
non-input neuron is explored. The neighbor function tells us which
|
||||||
|
other activation functions we should try in place of the one already
|
||||||
|
present at that neuron. We use the loss function and the training pairs
|
||||||
|
to determine which of these alternative activation functions we should
|
||||||
|
use at the given neuron instead.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
training_pairs (iterable): Training pairs (x,y) where x is a
|
||||||
|
dictionary of inputs and y is a tuple of outputs.
|
||||||
|
neighbor_func (function): A function which takes an Operation as
|
||||||
|
input and returns an iterable of Operations as output.
|
||||||
|
loss_func (function): The loss function to use for training. The
|
||||||
|
default is the 0-1 loss.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Select a random non-input layer from the neural net.
|
||||||
|
layer = random.choice(self.architecture[1:])
|
||||||
|
# Choose a random neuron from that layer.
|
||||||
|
neuron = random.choice(layer.neurons)
|
||||||
|
# Store a list of all the adjacent operations given by the supplied
|
||||||
|
# neighbor function.
|
||||||
|
ops = list(neighbor_func(neuron.activation_func))
|
||||||
|
# Also keep a list of the empirical loss associated with each of the
|
||||||
|
# operations in `ops`.
|
||||||
|
emp_loss = []
|
||||||
|
# Try each of the operations in `ops`.
|
||||||
|
for neighbor_op in ops:
|
||||||
|
# Change the activation function of `neuron` to the current
|
||||||
|
# candidate under consideration.
|
||||||
|
neuron.activation_func = neighbor_op
|
||||||
|
# Add the corresponding empirical loss (the average of the loss
|
||||||
|
# values) to the list of empirical losses.
|
||||||
|
emp_loss.append(self.empirical_loss(training_pairs, loss_func))
|
||||||
|
# Conclude the training step by changing the activation function of
|
||||||
|
# `neuron` to the candidate activation function which results in the
|
||||||
|
# lowest empirical loss.
|
||||||
|
neuron.activation_func = ops[emp_loss.index(min(emp_loss))]
|
||||||
|
|
||||||
|
def train(self, training_pairs, neighbor_func, iterations,
|
||||||
|
loss_func=zero_one_loss, report_loss=False):
|
||||||
|
"""
|
||||||
|
Train the neural net by performing the training step repeatedly.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
training_pairs (iterable): Training pairs (x,y) where x is a
|
||||||
|
dictionary of inputs and y is a tuple of outputs.
|
||||||
|
neighbor_func (function): A function which takes an Operation as
|
||||||
|
input and returns an iterable of Operations as output.
|
||||||
|
loss_func (function): The loss function to use for training. The
|
||||||
|
default is the 0-1 loss.
|
||||||
|
iterations (int): The number of training steps to perform.
|
||||||
|
report_loss (bool): Whether to print the final empirical loss after
|
||||||
|
the training has concluded.
|
||||||
|
"""
|
||||||
|
|
||||||
|
for _ in range(iterations):
|
||||||
|
self.training_step(training_pairs, neighbor_func, loss_func)
|
||||||
|
if report_loss:
|
||||||
|
print(self.empirical_loss(training_pairs, loss_func))
|
146
src/operations.py
Normal file
146
src/operations.py
Normal file
|
@ -0,0 +1,146 @@
|
||||||
|
"""
|
||||||
|
Operations for use as neural net activation functions
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
class Operation:
|
||||||
|
"""
|
||||||
|
A finitary operation.
|
||||||
|
|
||||||
|
Unlike `Relation`s, the objects of the `Operation` class do not have an
|
||||||
|
explicit reference to their universes. This is because in applications the
|
||||||
|
universe is often more structured than an initial section of the natural
|
||||||
|
numbers, so storing or type-checking this is expensive in general.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
arity (int): The number of arguments the operation takes. This
|
||||||
|
quantity should be at least 0. A 0-ary Operation takes empty
|
||||||
|
tuples as arguments. See the method __getitem__ below for more
|
||||||
|
information on this.
|
||||||
|
func (function or constant): The function which is used to compute the
|
||||||
|
output value of the Operation when applied to some inputs.
|
||||||
|
cache_values (bool): Whether to store already-computed values of the
|
||||||
|
Operation in memory.
|
||||||
|
values (dict): If `cache_values` is True then this attribute will keep
|
||||||
|
track of which input-output pairs have already been computed for
|
||||||
|
this Operation so that they may be reused. This can be replaced by
|
||||||
|
another object that can be indexed.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, arity, func, cache_values=True):
|
||||||
|
"""
|
||||||
|
Create a finitary operation.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
arity (int): The number of arguments the operation takes. This
|
||||||
|
quantity should be at least 0. A 0-ary Operation takes empty
|
||||||
|
tuples as arguments. See the method __getitem__ below for more
|
||||||
|
information on this.
|
||||||
|
func (function): The function which is used to compute the output
|
||||||
|
value of the Operation when applied to some inputs. If the
|
||||||
|
arity is 0, pass a constant, not a function, here.
|
||||||
|
cache_values (bool): Whether to store already-computed values of
|
||||||
|
the Operation in memory.
|
||||||
|
"""
|
||||||
|
|
||||||
|
self.arity = arity
|
||||||
|
self.func = func
|
||||||
|
self.cache_values = cache_values
|
||||||
|
if self.cache_values:
|
||||||
|
self.values = {}
|
||||||
|
|
||||||
|
def __call__(self, *tup):
|
||||||
|
"""
|
||||||
|
Compute the value of the Operation on given inputs.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
tup (tuple of int): The tuple of inputs to plug in to the
|
||||||
|
Operation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if self.arity == 0:
|
||||||
|
return self.func
|
||||||
|
if self.cache_values:
|
||||||
|
if tup not in self.values:
|
||||||
|
self.values[tup] = self.func(*tup)
|
||||||
|
return self.values[tup]
|
||||||
|
return self.func(*tup)
|
||||||
|
|
||||||
|
def __getitem__(self, ops):
|
||||||
|
"""
|
||||||
|
Form the generalized composite with a collection of operations.
|
||||||
|
The generalized composite of an operation f of arity k with k-many
|
||||||
|
operations g_i of arity n is an n-ary operation f[g_1,...,g_k]
|
||||||
|
where we evaluate as
|
||||||
|
(f[g_1,...,g_k])(x_1,...,x_n)=f(g_1(x_1,...,x_n),...,g_k(x_1,...,x_n)).
|
||||||
|
|
||||||
|
Composite operations are not memoized, but if their constituent
|
||||||
|
operations are memoized then the composite will perform the appropriate
|
||||||
|
lookups when called rather than recomputing those values from scratch.
|
||||||
|
|
||||||
|
Currently, this will not work when applied to a 0-ary operation.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
ops (Operation | iterable of Operation): The operations with which
|
||||||
|
to form the generalized composite. This should have length
|
||||||
|
`self.arity` and all of its entries should have the same
|
||||||
|
arities.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Operation: The result of composing the operations in question.
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert self.arity > 0
|
||||||
|
# When a single operation is being passed we turn it into a list.
|
||||||
|
if isinstance(ops, Operation):
|
||||||
|
ops = [ops]
|
||||||
|
assert len(ops) == self.arity
|
||||||
|
arities = frozenset(op.arity for op in ops)
|
||||||
|
assert len(arities) == 1
|
||||||
|
new_arity = tuple(arities)[0]
|
||||||
|
|
||||||
|
def composite(*tup):
|
||||||
|
"""
|
||||||
|
Evaluate the composite operation.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
*tup: A tuple of arguments to the composite operation. The
|
||||||
|
length of this should be the arity of the operations g_i.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
object: The result of applying the generalized composite
|
||||||
|
operation to the arguments.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return self(*(op(*tup) for op in ops))
|
||||||
|
|
||||||
|
return Operation(new_arity, composite, cache_values=False)
|
||||||
|
|
||||||
|
|
||||||
|
class Identity(Operation):
|
||||||
|
"""
|
||||||
|
An identity operation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
Operation.__init__(self, 1, lambda *x: x[0], cache_values=False)
|
||||||
|
|
||||||
|
|
||||||
|
class Projection(Operation):
|
||||||
|
"""
|
||||||
|
A projection operation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, arity, coordinate):
|
||||||
|
Operation.__init__(self, arity, lambda *x: x[coordinate],
|
||||||
|
cache_values=False)
|
||||||
|
|
||||||
|
|
||||||
|
class Constant(Operation):
|
||||||
|
"""
|
||||||
|
An operation whose value is `constant` for all inputs. The default arity
|
||||||
|
is 0, in which case the correct way to evaluate is as f[()], not f[].
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, constant, arity=0, cache_values=False):
|
||||||
|
Operation.__init__(self, arity, lambda *x: constant, cache_values)
|
11
src/output.py
Normal file
11
src/output.py
Normal file
|
@ -0,0 +1,11 @@
|
||||||
|
"""
|
||||||
|
Use project output folder
|
||||||
|
"""
|
||||||
|
import os, pathlib
|
||||||
|
|
||||||
|
# The output folder will be a sibling to `src`.
|
||||||
|
path = str(pathlib.Path.cwd().parent / 'output')
|
||||||
|
|
||||||
|
# Create the output folder if it does not exist.
|
||||||
|
if not os.path.exists(path):
|
||||||
|
os.makedirs(path)
|
303
src/polymorphisms.py
Normal file
303
src/polymorphisms.py
Normal file
|
@ -0,0 +1,303 @@
|
||||||
|
"""
|
||||||
|
Polymorphisms
|
||||||
|
"""
|
||||||
|
from relations import Relation
|
||||||
|
from operations import Operation, Projection
|
||||||
|
import random
|
||||||
|
import numpy
|
||||||
|
from pathlib import Path
|
||||||
|
import json
|
||||||
|
import itertools
|
||||||
|
|
||||||
|
|
||||||
|
def quarter_turn(rel):
|
||||||
|
"""
|
||||||
|
Rotate a binary relation by a quarter turn counterclockwise.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
rel (Relation): The binary relation to be rotated.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Relation: The same relation rotated by a quarter turn counterclockwise.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return Relation(((rel.universe_size - tup[1], tup[0]) for tup in rel),
|
||||||
|
rel.universe_size, rel.arity)
|
||||||
|
|
||||||
|
|
||||||
|
class RotationAutomorphism(Operation):
|
||||||
|
"""
|
||||||
|
An automorphism of the Hamming graph obtained by rotating an image.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, k=1):
|
||||||
|
"""
|
||||||
|
Create a rotation automorphism.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
k (int): The number of quarter turns by which to rotate the image
|
||||||
|
counterclockwise.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def func(x):
|
||||||
|
for _ in range(k % 4):
|
||||||
|
x = quarter_turn(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
Operation.__init__(self, 1, func=func)
|
||||||
|
|
||||||
|
|
||||||
|
class ReflectionAutomorphism(Operation):
|
||||||
|
"""
|
||||||
|
An automorphism of the Hamming graph obtained by reflecting an image across
|
||||||
|
its vertical axis of symmetry.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
"""
|
||||||
|
Create a reflection automorphism.
|
||||||
|
"""
|
||||||
|
|
||||||
|
Operation.__init__(self, 1,
|
||||||
|
lambda rel: Relation(((rel.universe_size - tup[0], tup[1])
|
||||||
|
for tup in rel), rel.universe_size, rel.arity))
|
||||||
|
|
||||||
|
|
||||||
|
class SwappingAutomorphism(Operation):
|
||||||
|
"""
|
||||||
|
An automorphism of the Hamming graph obtained by taking the componentwise
|
||||||
|
xor with a fixed relation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, b):
|
||||||
|
"""
|
||||||
|
Create a swapping automorphism for a given relation.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
b (Relation): The fixed relation used for swapping. This must have
|
||||||
|
the same universe and arity as the argument passed to the
|
||||||
|
automorphism.
|
||||||
|
"""
|
||||||
|
|
||||||
|
Operation.__init__(self, 1, lambda a: a ^ b)
|
||||||
|
|
||||||
|
|
||||||
|
class BlankingEndomorphism(Operation):
|
||||||
|
"""
|
||||||
|
An endomorphism of the Hamming graph obtained by taking the intersection
|
||||||
|
with a fixed relation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, b):
|
||||||
|
"""
|
||||||
|
Create a blanking endomorphism for a relation.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
b (Relation): The fixed relation used for blanking pixels.
|
||||||
|
"""
|
||||||
|
|
||||||
|
Operation.__init__(self, 1, lambda a: a & b)
|
||||||
|
|
||||||
|
|
||||||
|
def indicator_polymorphism(tup, a, b):
|
||||||
|
"""
|
||||||
|
Perform an indicator polymorphism where the output is either an empty
|
||||||
|
relation or a relation containing a single tuple.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
tup (tuple of int): The single tuple in question.
|
||||||
|
a (iterable of Relation): A sequence of relations, thought of as inputs
|
||||||
|
to the polymorphism.
|
||||||
|
b (iterable of Relation): A sequence of Relations with which dot
|
||||||
|
products are to be taken, thought of as constants. This should be
|
||||||
|
the same length as `a`.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Relation: The relation obtained by applying the indicator polymorphism.
|
||||||
|
"""
|
||||||
|
|
||||||
|
a = tuple(a)
|
||||||
|
universe_size = a[0].universe_size
|
||||||
|
if all(rel[0].dot(rel[1]) for rel in zip(a, b)):
|
||||||
|
return Relation((tup,), universe_size)
|
||||||
|
else:
|
||||||
|
return Relation(tuple(), universe_size, len(tup))
|
||||||
|
|
||||||
|
|
||||||
|
class IndicatorPolymorphism(Operation):
|
||||||
|
"""
|
||||||
|
Create a polymorphism of the Hamming graph by taking dot products with
|
||||||
|
fixed relations.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, tup, b):
|
||||||
|
"""
|
||||||
|
Create an indicator polymorphism where the output is either an empty
|
||||||
|
relation or a relation containing a single tuple.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
tup (tuple of int): The single tuple in question.
|
||||||
|
b (iterable of Relation): A sequence of Relations with which dot
|
||||||
|
products are to be taken, thought of as constants. Should
|
||||||
|
contain at least one entry.
|
||||||
|
"""
|
||||||
|
|
||||||
|
Operation.__init__(self, len(b),
|
||||||
|
lambda *a: indicator_polymorphism(tup, a, b))
|
||||||
|
|
||||||
|
|
||||||
|
def dominion_polymorphism(dominion_filename, dominion_num,
|
||||||
|
homomorphism_filename, a, b):
|
||||||
|
"""
|
||||||
|
Perform a dominion polymorphism by using the given files.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dominion_filename (str): The name of the file where dominions are
|
||||||
|
stored.
|
||||||
|
dominion_num (int): The number of the dominion to use.
|
||||||
|
homomorphism_filename (str): The name of the file where homomorphisms
|
||||||
|
are stored.
|
||||||
|
a (Relation): The first argument to the polymorphism.
|
||||||
|
b (Relation): The second argument to the polymorphism.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Relation: The result of performing the dominion polymorphism.
|
||||||
|
"""
|
||||||
|
|
||||||
|
with open(str(Path(__file__).parent.resolve()) +
|
||||||
|
'//..//output//{}.json'.format(dominion_filename), 'r') as read_file:
|
||||||
|
unprocessed_dominion = itertools.islice(read_file, dominion_num,
|
||||||
|
dominion_num + 1).__next__()
|
||||||
|
tree_num, dominion = json.loads(unprocessed_dominion)
|
||||||
|
label = dominion[len(a)][len(b)]
|
||||||
|
with open(str(Path(__file__).parent.resolve()) +
|
||||||
|
'//..//output//{}.json'.format(homomorphism_filename), 'r') as read_file:
|
||||||
|
for line in read_file:
|
||||||
|
line_tree_num, values = json.loads(line)
|
||||||
|
# Note that this always takes the first homomorphism in a given
|
||||||
|
# file with a given tree number, even if more than one is present.
|
||||||
|
if line_tree_num == tree_num:
|
||||||
|
return Relation(values[label], a.universe_size, a.arity)
|
||||||
|
|
||||||
|
|
||||||
|
class DominionPolymorphism(Operation):
|
||||||
|
"""
|
||||||
|
A dominion polymorphism.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, dominion_filename, dominion_num, homomorphism_filename):
|
||||||
|
"""
|
||||||
|
Create a dominion polymorphism which uses a specified dominion in
|
||||||
|
memory.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
dominion_filename (str): The name of the file where dominions are
|
||||||
|
stored.
|
||||||
|
dominion_num (int): The number of the dominion to use.
|
||||||
|
homomorphism_filename (str): The name of the file where
|
||||||
|
homomorphisms are stored.
|
||||||
|
"""
|
||||||
|
|
||||||
|
Operation.__init__(self, 2,
|
||||||
|
lambda a, b: dominion_polymorphism(dominion_filename, dominion_num,
|
||||||
|
homomorphism_filename, a, b))
|
||||||
|
|
||||||
|
|
||||||
|
def polymorphism_neighbor_func(op, num_of_neighbors, constant_relations,
|
||||||
|
dominion_filename=None, homomorphism_filename=None):
|
||||||
|
"""
|
||||||
|
Find the neighbors of a given polymorphism of the Hamming graph. Currently,
|
||||||
|
this assumes relations are all binary. There is also an implicit assumption
|
||||||
|
here that dominion polymorphisms should be binary operations. This could be
|
||||||
|
changed as well, but likely is not necessary.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
homomorphism_filename:
|
||||||
|
op (Operation): A Hamming graph polymorphism operation.
|
||||||
|
num_of_neighbors (int): The amount of possible neighbors to generate.
|
||||||
|
constant_relations (iterable of Relation): An iterable of relations to
|
||||||
|
use as constants. This is assumed to have nonzero length.
|
||||||
|
dominion_filename (None | str): The name of the file where dominions
|
||||||
|
are stored, or None. If None, dominion polymorphisms are not used.
|
||||||
|
homomorphism_filename (None | str): The name of the file where
|
||||||
|
homomorphisms are stored, or None. If None, dominion polymorphisms
|
||||||
|
are not used.
|
||||||
|
|
||||||
|
Yields:
|
||||||
|
Operation: A neighboring operation to the given one.
|
||||||
|
"""
|
||||||
|
|
||||||
|
endomorphisms = []
|
||||||
|
endomorphisms += [RotationAutomorphism(k) for k in range(4)]
|
||||||
|
endomorphisms.append(ReflectionAutomorphism())
|
||||||
|
endomorphisms.append('Swapping')
|
||||||
|
endomorphisms.append('Blanking')
|
||||||
|
constant_relations = tuple(constant_relations)
|
||||||
|
universe_size = constant_relations[0].universe_size
|
||||||
|
arity = constant_relations[0].arity
|
||||||
|
yield op
|
||||||
|
for _ in range(num_of_neighbors):
|
||||||
|
twist = random.randint(0, 1)
|
||||||
|
if twist:
|
||||||
|
endomorphisms_to_use = (op.arity + 1)*[RotationAutomorphism(0)]
|
||||||
|
twist_spot = random.randint(0, op.arity - 1)
|
||||||
|
endomorphisms_to_use[twist_spot] = random.choice(endomorphisms)
|
||||||
|
for i in range(len(endomorphisms_to_use)):
|
||||||
|
if endomorphisms_to_use[i] == 'Blanking':
|
||||||
|
endomorphisms_to_use[i] = \
|
||||||
|
BlankingEndomorphism(random.choice(constant_relations))
|
||||||
|
if endomorphisms_to_use[i] == 'Swapping':
|
||||||
|
endomorphisms_to_use[i] = \
|
||||||
|
SwappingAutomorphism(random.choice(constant_relations))
|
||||||
|
for i in range(len(endomorphisms_to_use) - 1):
|
||||||
|
endomorphisms_to_use[i] = \
|
||||||
|
endomorphisms_to_use[i][Projection(op.arity, i)]
|
||||||
|
yield endomorphisms_to_use[-1][op[endomorphisms_to_use[:-1]]]
|
||||||
|
else:
|
||||||
|
if op.arity == 1:
|
||||||
|
random_endomorphism = random.choice(endomorphisms)
|
||||||
|
if random_endomorphism == 'Blanking':
|
||||||
|
random_endomorphism = \
|
||||||
|
BlankingEndomorphism(random.choice(constant_relations))
|
||||||
|
if random_endomorphism == 'Swapping':
|
||||||
|
random_endomorphism = \
|
||||||
|
SwappingAutomorphism(random.choice(constant_relations))
|
||||||
|
yield random_endomorphism
|
||||||
|
if op.arity >= 2:
|
||||||
|
# Choose a dominion polymorphism 50% of the time, if they are
|
||||||
|
# available.
|
||||||
|
if random.randint(0, 1) and dominion_filename \
|
||||||
|
and homomorphism_filename:
|
||||||
|
with open(str(Path(__file__).parent.resolve()) + \
|
||||||
|
'//..//output//{}.json'.format(dominion_filename), 'r') \
|
||||||
|
as read_file:
|
||||||
|
num_of_dominions = sum(1 for _ in read_file)
|
||||||
|
dominion_num = random.randint(0, num_of_dominions - 1)
|
||||||
|
yield DominionPolymorphism(dominion_filename, dominion_num,
|
||||||
|
homomorphism_filename)
|
||||||
|
else:
|
||||||
|
# The universe size and relation arity for the indicator
|
||||||
|
# polymorphisms is read off from the `constant_relations`.
|
||||||
|
yield IndicatorPolymorphism(tuple(
|
||||||
|
random.randrange(universe_size) for _ in range(arity)),
|
||||||
|
random.choices(constant_relations, k=op.arity))
|
||||||
|
|
||||||
|
|
||||||
|
def hamming_loss(x, y):
|
||||||
|
"""
|
||||||
|
Compute the average Hamming loss between two iterables of relations. It is
|
||||||
|
assumed that `x` and `y` have the same length and that corresponding pairs
|
||||||
|
of relations in `x` and `y` have the same arity so that their symmetric
|
||||||
|
difference may be taken. In practice, this is always used when all the
|
||||||
|
relations belonging to `x` and `y` have the same arity.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (iterable of Relation): A sequence of relations.
|
||||||
|
y (iterable of Relation): Another sequence of relations.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
numpy.float64: The average size of the symmetric difference of
|
||||||
|
corresponding pairs of relations in `x` and `y`.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return numpy.average(tuple(len(rel0 ^ rel1) for (rel0, rel1) in zip(x, y)))
|
112
src/random_neural_net.py
Normal file
112
src/random_neural_net.py
Normal file
|
@ -0,0 +1,112 @@
|
||||||
|
"""
|
||||||
|
Tools for creating random neural nets
|
||||||
|
"""
|
||||||
|
import random
|
||||||
|
from neural_net import Neuron, Layer, NeuralNet
|
||||||
|
from operations import Operation
|
||||||
|
|
||||||
|
|
||||||
|
class RandomOperation(Operation):
|
||||||
|
"""
|
||||||
|
A random operation. The values of the operation on its arguments are chosen
|
||||||
|
randomly and lazily, but they are memoized so that the operation is
|
||||||
|
well-defined.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, order, arity):
|
||||||
|
"""
|
||||||
|
Create a random operation of a given arity and order.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
order (int): The size of the universe.
|
||||||
|
arity (int): The arity of the operation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if arity == 0:
|
||||||
|
# For a nullary operation, we choose a random member of the
|
||||||
|
# universe to be the corresponding constant.
|
||||||
|
random_constant = random.randint(0, order - 1)
|
||||||
|
Operation.__init__(self, 0, random_constant)
|
||||||
|
else:
|
||||||
|
Operation.__init__(self, arity,
|
||||||
|
lambda *x: random.randint(0, order - 1))
|
||||||
|
|
||||||
|
|
||||||
|
class RandomNeuron(Neuron):
|
||||||
|
"""
|
||||||
|
A random neuron. The activation function of the neuron will be chosen from
|
||||||
|
a provided list of possibilities and the inputs of the neuron will be
|
||||||
|
chosen from a provided previous layer.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, basic_ops, previous_layer):
|
||||||
|
"""
|
||||||
|
Create a random neuron.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
basic_ops (dict of int: iterable): The keys of this dictionary are
|
||||||
|
arities and the values are iterables of `Operation`s of that
|
||||||
|
arity.
|
||||||
|
previous_layer (Layer): The preceding layer from which inputs are
|
||||||
|
taken.
|
||||||
|
"""
|
||||||
|
|
||||||
|
activation_func = random.choice(basic_ops[random.choice(
|
||||||
|
tuple(basic_ops.keys()))])
|
||||||
|
Neuron.__init__(self, activation_func, [random.choice(
|
||||||
|
previous_layer.neurons) for _ in range(activation_func.arity)])
|
||||||
|
|
||||||
|
|
||||||
|
class RandomLayer(Layer):
|
||||||
|
"""
|
||||||
|
A random layer consisting of random neurons.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, basic_ops, previous_layer, size):
|
||||||
|
"""
|
||||||
|
Create a random layer. This takes the same dictionary of basic
|
||||||
|
operations as the `RandomNeuron` constructor, as well as a previous
|
||||||
|
layer and a desired number of nodes.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
basic_ops (dict of int: iterable): The keys of this dictionary are
|
||||||
|
arities and the values are iterables of `Operation`s of that
|
||||||
|
arity.
|
||||||
|
previous_layer (Layer): The preceding layer from which inputs are
|
||||||
|
taken.
|
||||||
|
size (int): The number of nodes to include in the random layer.
|
||||||
|
"""
|
||||||
|
|
||||||
|
Layer.__init__(self, [RandomNeuron(basic_ops, previous_layer)
|
||||||
|
for _ in range(size)])
|
||||||
|
|
||||||
|
|
||||||
|
class RandomNeuralNet(NeuralNet):
|
||||||
|
"""
|
||||||
|
A neural net whose architecture and activation functions are chosen
|
||||||
|
randomly.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, basic_ops, inputs, outputs, depth, breadth):
|
||||||
|
"""
|
||||||
|
Create a random neurol net with a given collection of basic activation
|
||||||
|
functions. The breadth and depth of the net should be specified, as
|
||||||
|
well as the number of inputs/outputs, but otherwise the architecture is
|
||||||
|
chosen randomly.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
basic_ops (dict of int: iterable): The keys of this dictionary are
|
||||||
|
arities and the values are iterables of `Operation`s of that
|
||||||
|
arity.
|
||||||
|
inputs (iterable of str): The names of the input neurons.
|
||||||
|
outputs (int): The number of output neurons.
|
||||||
|
depth (int): The number of layers in the neural net.
|
||||||
|
breadth (int): The maximum number of neurons in a layer.
|
||||||
|
"""
|
||||||
|
|
||||||
|
architecture = [Layer(inputs)]
|
||||||
|
for _ in range(depth - 2):
|
||||||
|
architecture.append(RandomLayer(basic_ops, architecture[-1],
|
||||||
|
random.randint(1, breadth)))
|
||||||
|
architecture.append(RandomLayer(basic_ops, architecture[-1], outputs))
|
||||||
|
NeuralNet.__init__(self, architecture)
|
511
src/relations.py
Normal file
511
src/relations.py
Normal file
|
@ -0,0 +1,511 @@
|
||||||
|
"""
|
||||||
|
Relations
|
||||||
|
"""
|
||||||
|
from itertools import product
|
||||||
|
from functools import wraps
|
||||||
|
import random
|
||||||
|
|
||||||
|
|
||||||
|
def comparison(method):
|
||||||
|
"""
|
||||||
|
Check a method for an appropriate comparison by using
|
||||||
|
`self.comparison_check` first.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
method (function): The method to which to apply this check.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
function: The given `method` with `self.comparison_check` being
|
||||||
|
called first.
|
||||||
|
"""
|
||||||
|
|
||||||
|
@wraps(method)
|
||||||
|
def checked_method(self, other):
|
||||||
|
assert self.comparison_check(other)
|
||||||
|
return method(self, other)
|
||||||
|
|
||||||
|
return checked_method
|
||||||
|
|
||||||
|
|
||||||
|
class Relation:
|
||||||
|
"""
|
||||||
|
A finitary relation on a finite set.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
tuples (frozenset of tuple of int): The tuples belonging to the
|
||||||
|
relation.
|
||||||
|
universe_size (int): The number of elements in the universe, which is
|
||||||
|
assumed to consist of an initial section of the nonnegative
|
||||||
|
integers.
|
||||||
|
arity (int): The length of each tuple in the relation. Can be inferred
|
||||||
|
from `tuples` unless that iterable is empty.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, tuples, universe_size, arity=0):
|
||||||
|
"""
|
||||||
|
Construct a relation from a collection of tuples.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
tuples (iterable of iterable of int): The tuples belonging to the
|
||||||
|
relation.
|
||||||
|
universe_size (int): The number of elements in the universe, which
|
||||||
|
is assumed to consist of an initial section of the nonnegative
|
||||||
|
integers.
|
||||||
|
arity (int): The length of each tuple in the relation. Can be
|
||||||
|
inferred from `tuples` unless that iterable is empty.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Create a tuple of tuples of integers from the given iterable
|
||||||
|
# `tuples`.
|
||||||
|
tuples = tuple(tuple(entry) for entry in tuples)
|
||||||
|
# If `tuples` is empty then we have an empty relation and cannot infer
|
||||||
|
# its arity from its members. If no value is provided for the arity,
|
||||||
|
# it defaults to 0.
|
||||||
|
if tuples:
|
||||||
|
# We assume that all entries in `tuples` have the same length.
|
||||||
|
# Take one of them to get the arity of the relation.
|
||||||
|
self._arity = len(tuples[0])
|
||||||
|
else:
|
||||||
|
self._arity = arity
|
||||||
|
# Cast `tuples` to a frozenset and store it as the `tuples` attribute
|
||||||
|
# of the relation.
|
||||||
|
self._tuples = frozenset(tuples)
|
||||||
|
# Store the size of the universe.
|
||||||
|
self._universe_size = universe_size
|
||||||
|
|
||||||
|
@property
|
||||||
|
def tuples(self):
|
||||||
|
return self._tuples
|
||||||
|
|
||||||
|
@property
|
||||||
|
def universe_size(self):
|
||||||
|
return self._universe_size
|
||||||
|
|
||||||
|
@property
|
||||||
|
def arity(self):
|
||||||
|
return self._arity
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
"""
|
||||||
|
Give the number of tuples in the relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
int: The number of tuples in `self.tuples`.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return len(self.tuples)
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
"""
|
||||||
|
Display basic information about the relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: Information about the universe, arity, and size of the
|
||||||
|
relation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# When the universe size is large we use ellipsis rather than write
|
||||||
|
# out the whole universe.
|
||||||
|
if self.universe_size > 10:
|
||||||
|
universe = '{0,...,' + str(self.universe_size - 1) + '}'
|
||||||
|
else:
|
||||||
|
universe = '{' + \
|
||||||
|
','.join(map(str, range(self.universe_size))) + '}'
|
||||||
|
# Check whether 'tuple' needs to be pluralized.
|
||||||
|
if len(self) == 1:
|
||||||
|
plural = ''
|
||||||
|
else:
|
||||||
|
plural = 's'
|
||||||
|
return 'A relation on {} of arity {} containing {} tuple{}'.format(
|
||||||
|
universe, self.arity, len(self), plural)
|
||||||
|
|
||||||
|
def __contains__(self, tup):
|
||||||
|
"""
|
||||||
|
Check whether a tuple belongs to a relation.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
tup (tuple of int): The tuple we are checking.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
bool: True when `tup` belongs to `self.tuples`, False otherwise.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return tup in self.tuples
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
"""
|
||||||
|
Produce an iterator for the tuples in the relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
frozenset: The set of tuples in the relation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return iter(self.tuples)
|
||||||
|
|
||||||
|
def __bool__(self):
|
||||||
|
"""
|
||||||
|
Cast a relation to a boolean value.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
bool: True when self.tuples is nonempty, False otherwise.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return bool(self.tuples)
|
||||||
|
|
||||||
|
def show(self, special_binary_display=None):
|
||||||
|
"""
|
||||||
|
Display the members of `self.tuples`.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
special_binary_display (str): Show a binary relation through some
|
||||||
|
other method than just printing pairs. The default is None,
|
||||||
|
which means pairs will be printed as usual. This can be set to
|
||||||
|
'binary_pixels' in order to print out the binary image
|
||||||
|
corresponding to the relation or 'sparse' to display the
|
||||||
|
presence of a pair as an X and the absence of a pair as a
|
||||||
|
space.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if special_binary_display:
|
||||||
|
if special_binary_display == 'binary_pixels':
|
||||||
|
for row in range(self.universe_size):
|
||||||
|
line = ''
|
||||||
|
for column in range(self.universe_size):
|
||||||
|
if (row, column) in self:
|
||||||
|
line += '1'
|
||||||
|
else:
|
||||||
|
line += '0'
|
||||||
|
print(line)
|
||||||
|
if special_binary_display == 'sparse':
|
||||||
|
for row in range(self.universe_size):
|
||||||
|
line = ''
|
||||||
|
for column in range(self.universe_size):
|
||||||
|
if (row, column) in self:
|
||||||
|
line += 'X'
|
||||||
|
else:
|
||||||
|
line += ' '
|
||||||
|
print(line)
|
||||||
|
if special_binary_display == 'latex_matrix':
|
||||||
|
output = '\\begin{bmatrix}'
|
||||||
|
for row in range(self.universe_size):
|
||||||
|
output += '&'.join(map(str, (int((row, column) in self)
|
||||||
|
for column in range(self.universe_size))))
|
||||||
|
if row != self.universe_size - 1:
|
||||||
|
output += '\\\\'
|
||||||
|
output += '\\end{bmatrix}'
|
||||||
|
print(output)
|
||||||
|
else:
|
||||||
|
for tup in self:
|
||||||
|
print(tup)
|
||||||
|
|
||||||
|
def comparison_check(self, other):
|
||||||
|
"""
|
||||||
|
Determine whether another `Relation` object is of the correct type to
|
||||||
|
be comparable with the relation in question.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
other (Relation): The other relation to which to compare this
|
||||||
|
relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
bool: True when the two relations have the same universe and arity,
|
||||||
|
False otherwise.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return self.universe_size == other.universe_size and \
|
||||||
|
self.arity == other.arity
|
||||||
|
|
||||||
|
def __hash__(self):
|
||||||
|
"""
|
||||||
|
Find the hash value for the `Relation` object.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
int: The hash value of the `Relation` object.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return hash((self.tuples, self.universe_size, self.arity))
|
||||||
|
|
||||||
|
@comparison
|
||||||
|
def __eq__(self, other):
|
||||||
|
"""
|
||||||
|
Check whether the relation is equal to another relation.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
other (Relation): The other relation to which to compare this
|
||||||
|
relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
bool: True when self.tuples is equal to other.tuples and False
|
||||||
|
otherwise.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return self.tuples == other.tuples
|
||||||
|
|
||||||
|
@comparison
|
||||||
|
def __lt__(self, other):
|
||||||
|
"""
|
||||||
|
Check whether the relation is properly contained in another relation.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
other (Relation): The other relation to which to compare this
|
||||||
|
relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
bool: True when self.tuples is a proper subset of other.tuples and
|
||||||
|
False otherwise.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return self.tuples < other.tuples
|
||||||
|
|
||||||
|
@comparison
|
||||||
|
def __le__(self, other):
|
||||||
|
"""
|
||||||
|
Check whether the relation is contained in another relation.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
other (Relation): The other relation to which to compare this
|
||||||
|
relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
bool: True when self.tuples is a subset of other.tuples and False
|
||||||
|
otherwise.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return self.tuples <= other.tuples
|
||||||
|
|
||||||
|
@comparison
|
||||||
|
def __gt__(self, other):
|
||||||
|
"""
|
||||||
|
Check whether the relation properly contains in another relation.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
other (Relation): The other relation to which to compare this
|
||||||
|
relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
bool: True when self.tuples is a proper superset of other.tuples
|
||||||
|
and False otherwise.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return self.tuples > other.tuples
|
||||||
|
|
||||||
|
@comparison
|
||||||
|
def __ge__(self, other):
|
||||||
|
"""
|
||||||
|
Check whether the relation contains in another relation.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
other (Relation): The other relation to which to compare this
|
||||||
|
relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
bool: True when self.tuples is a superset of other.tuples and False
|
||||||
|
otherwise.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return self.tuples >= other.tuples
|
||||||
|
|
||||||
|
def __invert__(self):
|
||||||
|
"""
|
||||||
|
Create the complement of a relation. That is, a tuple in the
|
||||||
|
appropriate Cartesian power of the universe will belong to the
|
||||||
|
complement if and only if it does not belong to the given relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Relation: The relation which is dual to the given relation in the
|
||||||
|
above sense.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return Relation((tup for tup in product(range(self.universe_size),
|
||||||
|
repeat=self.arity) if tup not in self), self.universe_size, self.arity)
|
||||||
|
|
||||||
|
@comparison
|
||||||
|
def __sub__(self, other):
|
||||||
|
"""
|
||||||
|
Take the difference of two relations. This is the same as the set
|
||||||
|
difference of their sets of tuples.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
other (Relation): The other relation to remove from this relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Relation: The relation with the same universe and arity as the
|
||||||
|
inputs which is their set difference.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return Relation(self.tuples.difference(other.tuples),
|
||||||
|
self.universe_size, self.arity)
|
||||||
|
|
||||||
|
@comparison
|
||||||
|
def __and__(self, other):
|
||||||
|
"""
|
||||||
|
Take the intersection of two relations. This is the same as bitwise
|
||||||
|
multiplication.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
other (Relation): The other relation to intersect with this
|
||||||
|
relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Relation: The relation with the same universe and arity as the
|
||||||
|
inputs which is their intersection.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return Relation(self.tuples.intersection(other.tuples),
|
||||||
|
self.universe_size, self.arity)
|
||||||
|
|
||||||
|
@comparison
|
||||||
|
def __or__(self, other):
|
||||||
|
"""
|
||||||
|
Take the union of two relations. This is the same as bitwise
|
||||||
|
disjunction.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
other (Relation): The other relation to union with this relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Relation: The relation with the same universe and arity as the
|
||||||
|
inputs which is their union.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return Relation(self.tuples.union(other.tuples),
|
||||||
|
self.universe_size, self.arity)
|
||||||
|
|
||||||
|
@comparison
|
||||||
|
def __xor__(self, other):
|
||||||
|
"""
|
||||||
|
Take the symmetric difference of two relations. This is the same as
|
||||||
|
bitwise addition.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
other (Relation): The other relation to which to add this relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Relation: The relation with the same universe and arity as the
|
||||||
|
inputs which is their symmetric difference.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return Relation(self.tuples.symmetric_difference(other.tuples),
|
||||||
|
self.universe_size, self.arity)
|
||||||
|
|
||||||
|
@comparison
|
||||||
|
def __isub__(self, other):
|
||||||
|
"""
|
||||||
|
Take the set difference of two relations with augmented assignment.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
other (Relation): The other relation to remove from this relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Relation: The relation with the same universe and arity as the
|
||||||
|
inputs which is their set difference.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return self - other
|
||||||
|
|
||||||
|
@comparison
|
||||||
|
def __iand__(self, other):
|
||||||
|
"""
|
||||||
|
Take the set intersection of two relations with augmented assignment.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
other (Relation): The other relation to remove from this relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Relation: The relation with the same universe and arity as the
|
||||||
|
inputs which is their intersection.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return self & other
|
||||||
|
|
||||||
|
@comparison
|
||||||
|
def __ior__(self, other):
|
||||||
|
"""
|
||||||
|
Take the set union of two relations with augmented assignment.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
other (Relation): The other relation to union with this relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Relation: The relation with the same universe and arity as the
|
||||||
|
inputs which is their union.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return self | other
|
||||||
|
|
||||||
|
@comparison
|
||||||
|
def __ixor__(self, other):
|
||||||
|
"""
|
||||||
|
Take the symmetric difference of two relations with augmented
|
||||||
|
assignment.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
other (Relation): The other relation to which to add this relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Relation: The relation with the same universe and arity as the
|
||||||
|
inputs which is their symmetric difference.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return self ^ other
|
||||||
|
|
||||||
|
@comparison
|
||||||
|
def dot(self, other):
|
||||||
|
"""
|
||||||
|
Take the dot product of two relations modulo 2. This is the same as
|
||||||
|
computing the size of the intersection of the two relations modulo 2.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
other (Relation): The other relation with to take the dot product.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
int: Either 0 or 1, depending on the parity of the number of tuples
|
||||||
|
in `self` and `other`.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return len(self & other) % 2
|
||||||
|
|
||||||
|
|
||||||
|
def random_relation(universe_size):
|
||||||
|
"""
|
||||||
|
Create a random binary operation whose universe is an initial section of
|
||||||
|
the naturals.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
universe_size (int): The number of elements of the universe.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Relation: The randomly-created binary relation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Choose a random number of pairs to add to our binary relation. We might
|
||||||
|
# get some duplicates, so this will give an upper bound for the number of
|
||||||
|
# pairs in the relation.
|
||||||
|
rel_size = random.randint(0, universe_size ** 2 - 1)
|
||||||
|
rel = set()
|
||||||
|
for _ in range(rel_size):
|
||||||
|
rel.add((random.randint(0, universe_size - 1),
|
||||||
|
random.randint(0, universe_size - 1)))
|
||||||
|
return Relation(rel, universe_size, arity=2)
|
||||||
|
|
||||||
|
|
||||||
|
def random_adjacent_relation(rel):
|
||||||
|
"""
|
||||||
|
Returns a random neighbor of a given binary relation in the Hamming graph
|
||||||
|
by "switching" at most one tuple.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
rel (Relation): A binary relation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Relation: An adjacent binary relation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
size = rel.universe_size
|
||||||
|
# Return the original relation with probability 1/(size * size).
|
||||||
|
if random.randint(0, size * size - 1) == 0:
|
||||||
|
return rel
|
||||||
|
# Otherwise, flip a random tuple.
|
||||||
|
rand_tuple = (random.randint(0, size - 1), random.randint(0, size - 1))
|
||||||
|
rand_rel = Relation([rand_tuple], size, 2)
|
||||||
|
return rel ^ rand_rel
|
9
tests/src.py
Normal file
9
tests/src.py
Normal file
|
@ -0,0 +1,9 @@
|
||||||
|
"""
|
||||||
|
Import project src folder
|
||||||
|
"""
|
||||||
|
# Note that this depends on the `src` folder being a sibling directory to the
|
||||||
|
# current directory.
|
||||||
|
import sys, pathlib
|
||||||
|
|
||||||
|
|
||||||
|
sys.path.append(str(pathlib.Path.cwd().parent / 'src'))
|
81
tests/test_binary_relation_polymorphisms.py
Normal file
81
tests/test_binary_relation_polymorphisms.py
Normal file
|
@ -0,0 +1,81 @@
|
||||||
|
"""
|
||||||
|
Tests for binary relation polymorphisms
|
||||||
|
"""
|
||||||
|
import src
|
||||||
|
from polymorphisms import RotationAutomorphism, ReflectionAutomorphism, \
|
||||||
|
SwappingAutomorphism, BlankingEndomorphism, IndicatorPolymorphism
|
||||||
|
from mnist_training_binary import binary_mnist_zero_one
|
||||||
|
|
||||||
|
# Load some binary images from the modified MNIST training set.
|
||||||
|
training_pairs = tuple(binary_mnist_zero_one(100, 'train'))
|
||||||
|
|
||||||
|
# Create a rotation automorphism.
|
||||||
|
rot = RotationAutomorphism()
|
||||||
|
# Choose an image to rotate.
|
||||||
|
print('Original image')
|
||||||
|
img = training_pairs[24][0]['x0']
|
||||||
|
print(type(img))
|
||||||
|
# Display the original.
|
||||||
|
img.show('sparse')
|
||||||
|
# Display the rotated image.
|
||||||
|
print('Rotated image')
|
||||||
|
rot(img, ).show('sparse')
|
||||||
|
# We can rotate by any number of quarter turns.
|
||||||
|
print('Rotated half a turn')
|
||||||
|
rot2 = RotationAutomorphism(2)
|
||||||
|
rot2(img, ).show('sparse')
|
||||||
|
print('Rotated three quarter turns')
|
||||||
|
rot3 = RotationAutomorphism(3)
|
||||||
|
rot3(img, ).show('sparse')
|
||||||
|
|
||||||
|
# Create a reflection automorphism.
|
||||||
|
refl = ReflectionAutomorphism()
|
||||||
|
# Reflect our test image.
|
||||||
|
print('Reflected image')
|
||||||
|
refl(img, ).show('sparse')
|
||||||
|
# We can compose rotations and reflections.
|
||||||
|
print('Rotated and reflected image')
|
||||||
|
rot(refl(img, ), ).show('sparse')
|
||||||
|
|
||||||
|
# Create a swapping automorphism.
|
||||||
|
swap = SwappingAutomorphism(training_pairs[37][0]['x0'])
|
||||||
|
# Display the image used for swapping.
|
||||||
|
print('Image to use for swap')
|
||||||
|
training_pairs[37][0]['x0'].show('sparse')
|
||||||
|
# Swap an image.
|
||||||
|
print('Swapped image')
|
||||||
|
swap(img, ).show('sparse')
|
||||||
|
|
||||||
|
# Create a blanking endomorphism.
|
||||||
|
blank = BlankingEndomorphism(training_pairs[37][0]['x0'])
|
||||||
|
# Display the image used for blanking.
|
||||||
|
print('Image to use for blanking')
|
||||||
|
training_pairs[37][0]['x0'].show('sparse')
|
||||||
|
# Swap an image.
|
||||||
|
print('Blanked image')
|
||||||
|
blank(img, ).show('sparse')
|
||||||
|
|
||||||
|
# Create a binary indicator polymorphism.
|
||||||
|
ind_pol = IndicatorPolymorphism((0, 0), \
|
||||||
|
(training_pairs[2][0]['x0'], training_pairs[51][0]['x0']))
|
||||||
|
# Display the images used for dot products.
|
||||||
|
print('First image for dot product')
|
||||||
|
training_pairs[2][0]['x0'].show('sparse')
|
||||||
|
print('Second image used for dot product')
|
||||||
|
training_pairs[51][0]['x0'].show('sparse')
|
||||||
|
# Display a pair of images to which to apply the polymorphism.
|
||||||
|
img1 = training_pairs[3][0]['x0']
|
||||||
|
img2 = training_pairs[5][0]['x0']
|
||||||
|
print('First input image')
|
||||||
|
img1.show('sparse')
|
||||||
|
print('Second input image')
|
||||||
|
img2.show('sparse')
|
||||||
|
# Apply the polymorphism.
|
||||||
|
print('Image obtained from polymorphism')
|
||||||
|
ind_pol(img1, img2).show('sparse')
|
||||||
|
# Change one of the inputs and check the new output.
|
||||||
|
print('New first input')
|
||||||
|
img3 = training_pairs[34][0]['x0']
|
||||||
|
img3.show('sparse')
|
||||||
|
print('New image obtained from polymorphism')
|
||||||
|
ind_pol(img3, img2).show('sparse')
|
38
tests/test_dominion.py
Normal file
38
tests/test_dominion.py
Normal file
|
@ -0,0 +1,38 @@
|
||||||
|
"""
|
||||||
|
Tests for creating and storing dominions
|
||||||
|
"""
|
||||||
|
import src
|
||||||
|
from dominion import random_dominion
|
||||||
|
from graphs import random_tree
|
||||||
|
|
||||||
|
|
||||||
|
print('Create a random dominion of size 4 with labels {0,1,2}.')
|
||||||
|
D = random_dominion(4, range(3))
|
||||||
|
print('Show some information about this dominion.')
|
||||||
|
print(D)
|
||||||
|
print('Display the dominion we created.')
|
||||||
|
D.show()
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('We can also demand that only certain labels can appear next to each \
|
||||||
|
other.')
|
||||||
|
print('We will use a tree to illustrate this, although we could have used any \
|
||||||
|
kind of graph we like.')
|
||||||
|
print('The vertices of our tree will be {0,1,2,3,4,5}.')
|
||||||
|
T = random_tree(range(6))
|
||||||
|
print(T)
|
||||||
|
print('Create a new random dominion of size 10 with labels {0,1,2,3,4,5} and \
|
||||||
|
display it.')
|
||||||
|
D = random_dominion(10, range(6), T)
|
||||||
|
D.show()
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('We can also save an image of this dominion as a file.')
|
||||||
|
print('We\'ll use `magma` for our color map.')
|
||||||
|
D.draw('magma', 'dominion_draw_test')
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('Let\' see how long it takes to make a bigger dominion and draw it.')
|
||||||
|
D = random_dominion(1000, range(6), T)
|
||||||
|
D.draw('magma', 'dominion_draw_test_big')
|
||||||
|
print()
|
22
tests/test_dominion_setup.py
Normal file
22
tests/test_dominion_setup.py
Normal file
|
@ -0,0 +1,22 @@
|
||||||
|
"""
|
||||||
|
Tests for creating the files used by dominion polymorphisms
|
||||||
|
"""
|
||||||
|
import src
|
||||||
|
from dominion_setup import grow_forest, build_dominions, find_homomorphisms
|
||||||
|
|
||||||
|
print('Grow a forest file consisting of trees that we will use as constraint graphs.')
|
||||||
|
print('We\'ll make 10 tress, each with 100 nodes.')
|
||||||
|
grow_forest('forest', 10, 100)
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('Create dominions with random trees from this collection.')
|
||||||
|
# If we're going to use these dominions to create polymorphisms, then we need to have the size be one more than the
|
||||||
|
# maximum possible Hamming weight for a given universe size for binary relations. Say our universe has 28 members.
|
||||||
|
# The number of possible values the Hamming weight can take on is 28*28+1=785.
|
||||||
|
print('We\'ll create 20 dominions, each of size 785. That is, universe size 28.')
|
||||||
|
build_dominions('forest', 'dominions', 20, 785)
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('Find homomorphisms from the trees we created to the Hamming graph.')
|
||||||
|
print('We\'ll find one homomorphism for each tree we created, for the universe size 28.')
|
||||||
|
find_homomorphisms('forest', 'homomorphisms', 28)
|
25
tests/test_graphs.py
Normal file
25
tests/test_graphs.py
Normal file
|
@ -0,0 +1,25 @@
|
||||||
|
"""
|
||||||
|
Graphs test
|
||||||
|
"""
|
||||||
|
import src
|
||||||
|
from graphs import Graph, load_graph_from_file, random_tree
|
||||||
|
|
||||||
|
print('Create a graph on the vertex set {a,b,c} with edges {a,b} and {c,b}.')
|
||||||
|
G = Graph(('a', 'b', 'c'), (('a', 'b'), ('c', 'b')))
|
||||||
|
print('Display the neighbors of the vertex b.')
|
||||||
|
print(tuple(G.neighbors('b')))
|
||||||
|
print('Display information about our graph.')
|
||||||
|
print(G)
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('Write our graph to a file.')
|
||||||
|
print('The file will be appended to if it already exists.')
|
||||||
|
G.write_to_file('graphs')
|
||||||
|
print('We can read the data of this graph back from the file.')
|
||||||
|
print(load_graph_from_file('graphs', 0))
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('Create a random tree with 10 vertices.')
|
||||||
|
T = random_tree(range(10))
|
||||||
|
print('Display information about our tree.')
|
||||||
|
print(T)
|
36
tests/test_mnist_training_binary.py
Normal file
36
tests/test_mnist_training_binary.py
Normal file
|
@ -0,0 +1,36 @@
|
||||||
|
"""
|
||||||
|
Check that MNIST training/test data is functioning
|
||||||
|
"""
|
||||||
|
import src
|
||||||
|
import mnist_training_binary
|
||||||
|
|
||||||
|
# Create a list of 1000 training pairs.
|
||||||
|
mnist_relations_train = mnist_training_binary.mnist_binary_relations('train')
|
||||||
|
training_pairs = tuple(next(mnist_relations_train) for _ in range(1000))
|
||||||
|
# Display the 59th image.
|
||||||
|
training_pairs[59][0].show('sparse')
|
||||||
|
# Display the corresponding label. Can you see the digit in the above array?
|
||||||
|
print(training_pairs[59][1])
|
||||||
|
print()
|
||||||
|
|
||||||
|
# Create a list of 1000 test pairs.
|
||||||
|
mnist_relations_test = mnist_training_binary.mnist_binary_relations('test')
|
||||||
|
test_pairs = tuple(next(mnist_relations_test) for _ in range(1000))
|
||||||
|
# Display the 519th image.
|
||||||
|
test_pairs[519][0].show('sparse')
|
||||||
|
# Display the corresponding label. Can you see the digit in the above array?
|
||||||
|
print(test_pairs[519][1])
|
||||||
|
print()
|
||||||
|
|
||||||
|
# Create a list of 100 training pairs for use with a discrete neural net.
|
||||||
|
zero_training_pairs = \
|
||||||
|
tuple(mnist_training_binary.binary_mnist_zero_one(100, 'train'))
|
||||||
|
# This digit 0 is labeled with an all-black image (all ones) to indicate it is
|
||||||
|
# a handwritten 0.
|
||||||
|
zero_training_pairs[0][0]['x0'].show('sparse')
|
||||||
|
zero_training_pairs[0][1][0].show('binary_pixels')
|
||||||
|
print()
|
||||||
|
# This digit 1 is labeled with an all-white image (all zeroes) to indicate it
|
||||||
|
# is not a handwritten 0.
|
||||||
|
zero_training_pairs[100][0]['x0'].show('sparse')
|
||||||
|
zero_training_pairs[100][1][0].show('binary_pixels')
|
70
tests/test_neural_net.py
Normal file
70
tests/test_neural_net.py
Normal file
|
@ -0,0 +1,70 @@
|
||||||
|
"""
|
||||||
|
Discrete neural net test
|
||||||
|
"""
|
||||||
|
import src
|
||||||
|
from neural_net import Neuron, Layer, NeuralNet
|
||||||
|
import arithmetic_operations
|
||||||
|
from random_neural_net import RandomOperation
|
||||||
|
from itertools import product
|
||||||
|
|
||||||
|
# Our neural net will have three inputs.
|
||||||
|
layer0 = Layer(('x0', 'x1', 'x2'))
|
||||||
|
|
||||||
|
# The neural net will have input and output values which are integers modulo
|
||||||
|
# `order`.
|
||||||
|
order = 100
|
||||||
|
|
||||||
|
# The first layer has two neurons, which are initialized to carry modular
|
||||||
|
# addition and a random operation as activation functions.
|
||||||
|
neuron0 = Neuron(arithmetic_operations.ModularAddition(order), ('x0', 'x1'))
|
||||||
|
neuron1 = Neuron(RandomOperation(order, 2), ('x1', 'x2'))
|
||||||
|
layer1 = Layer([neuron0, neuron1])
|
||||||
|
|
||||||
|
# The third layer has a single neuron, which is initialized to carry modular
|
||||||
|
# multiplication.
|
||||||
|
neuron2 = Neuron(arithmetic_operations.ModularMultiplication(5),
|
||||||
|
[neuron0, neuron1])
|
||||||
|
layer2 = Layer([neuron2])
|
||||||
|
|
||||||
|
net = NeuralNet([layer0, layer1, layer2])
|
||||||
|
|
||||||
|
# We can feed values forward and display the result.
|
||||||
|
print(net.feed_forward({'x0': 0, 'x1': 1, 'x2': 2}))
|
||||||
|
print()
|
||||||
|
|
||||||
|
# We create a training set in an effort to teach our net how to compute
|
||||||
|
# (x0+x1)*(x1+x2).
|
||||||
|
# We'll do this modulo `order`.
|
||||||
|
training_pairs = [({'x0': x[0], 'x1': x[1], 'x2': x[2]},
|
||||||
|
(((x[0] + x[1]) * (x[1] + x[2])) % order,))
|
||||||
|
for x in product(range(order // 2 + 1), repeat=3)]
|
||||||
|
|
||||||
|
# We can check out empirical loss with respect to this training set.
|
||||||
|
# Our loss function will just be the 0-1 loss.
|
||||||
|
print(net.empirical_loss(training_pairs))
|
||||||
|
print()
|
||||||
|
|
||||||
|
|
||||||
|
def neighbor_func(op):
|
||||||
|
"""
|
||||||
|
Report all the neighbors of any operation as being addition,
|
||||||
|
multiplication, or a random binary operation.
|
||||||
|
Our example only has binary operations for activation functions so we don't
|
||||||
|
need to be any more detailed than this.
|
||||||
|
|
||||||
|
Argument:
|
||||||
|
op (operation): The Operation whose neighbors we'd like to find.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list of Operations: The neighboring Operations.
|
||||||
|
"""
|
||||||
|
|
||||||
|
return [arithmetic_operations.ModularAddition(order),
|
||||||
|
arithmetic_operations.ModularMultiplication(order),
|
||||||
|
RandomOperation(order, 2)]
|
||||||
|
|
||||||
|
|
||||||
|
# We can now begin training.
|
||||||
|
# Usually it will only take a few training steps to learn to replace the random
|
||||||
|
# operation with addition.
|
||||||
|
net.train(training_pairs, neighbor_func, 5, report_loss=True)
|
201
tests/test_relations.py
Normal file
201
tests/test_relations.py
Normal file
|
@ -0,0 +1,201 @@
|
||||||
|
"""
|
||||||
|
Relations test
|
||||||
|
"""
|
||||||
|
import src
|
||||||
|
from relations import Relation, random_relation, random_adjacent_relation
|
||||||
|
from itertools import product
|
||||||
|
|
||||||
|
print('Create a binary relation on the set {0,1,2} whose members are the \
|
||||||
|
pairs (0,0), (0,1), and (2,0).\n\
|
||||||
|
Note that the pair (0,0) is repeated at the end of our list of pairs. \
|
||||||
|
Such duplicates are ignored by the constructor for the `Relation` class.')
|
||||||
|
print()
|
||||||
|
R = Relation([[0, 0], [0, 1], [2, 0], [0, 0]], 3)
|
||||||
|
|
||||||
|
print('We can display some basic information about the relation.')
|
||||||
|
print(R)
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('The relation has a frozenset of tuples.')
|
||||||
|
print(R.tuples)
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('In many ways it acts like a frozenset. It has a length, which is the \
|
||||||
|
number of tuples in the relation.')
|
||||||
|
print(len(R))
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('There is a convenience function for printing the members of \
|
||||||
|
`R.tuples`.')
|
||||||
|
R.show()
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('We can create another relation which has the same tuples and \
|
||||||
|
universe.\n\
|
||||||
|
Note that we can pass in any iterable of iterables as long as the innermost \
|
||||||
|
iterables are pairs of integers.')
|
||||||
|
S = Relation([(2, 0), (0, 1), [0, 0]], 3)
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('Show the basic information about both relations we created.')
|
||||||
|
print(R)
|
||||||
|
print(S)
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('We can check the tuples in each of these relations.')
|
||||||
|
print('The tuples in `R`:')
|
||||||
|
R.show()
|
||||||
|
print('The tuples in `S`:')
|
||||||
|
S.show()
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('Observe that `R` and `S` are different objects as far as Python is \
|
||||||
|
concerned.')
|
||||||
|
print(R is S)
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('You can also see this by printing their object ids.')
|
||||||
|
print(id(R))
|
||||||
|
print(id(S))
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('However, `R` and `S` are equal to each other.')
|
||||||
|
print(R == S)
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('We can also do comparisons. We have that `R` is contained in `S`, but \
|
||||||
|
this containment isn\'t proper.')
|
||||||
|
print(R <= S)
|
||||||
|
print(R < S)
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('If we create a relation whose set of tuples is contained in those for \
|
||||||
|
`R` but whose universe is a different size, we will see that these \
|
||||||
|
comparisons must be between relations with the same universe and arity.')
|
||||||
|
T = Relation({(0, 0), (0, 1)}, 2)
|
||||||
|
print(T.tuples < R.tuples)
|
||||||
|
try:
|
||||||
|
print(T < R)
|
||||||
|
except AssertionError:
|
||||||
|
print('This will be printed because an AssertionError is thrown when \
|
||||||
|
comparing two relations on different universes.')
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('Naturally, comparisons in the reverse direction work, as well.')
|
||||||
|
print(R >= S)
|
||||||
|
print(R > S)
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('Since `Relation` objects are hashable, we can use them as entries in \
|
||||||
|
tuples, members of sets, or keys of dictionaries.')
|
||||||
|
tup = (R, S, T)
|
||||||
|
set_of_relations = {R, S, T}
|
||||||
|
D = {R: 1, S: 'a', T: R}
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('Arithmetic operations are also possible for relations.')
|
||||||
|
print('We can create the bitwise complement of a relation.')
|
||||||
|
U = ~R
|
||||||
|
U.show()
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('We can take the symmetric difference of two relations if they have the \
|
||||||
|
same universe and arity.')
|
||||||
|
X = Relation({(0, 0, 1), (0, 1, 1)}, 2)
|
||||||
|
Y = Relation({(0, 0, 1), (1, 0, 1)}, 2)
|
||||||
|
(X ^ Y).show()
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('Similarly to the order comparisons, we will get an AssertionError if \
|
||||||
|
we try to add two relations with different universes or arities.')
|
||||||
|
Z = Relation({(0, 0, 1), (0, 1, 1)}, 3)
|
||||||
|
try:
|
||||||
|
X ^ Z
|
||||||
|
except AssertionError:
|
||||||
|
print('This will print since we have raised an AssertionError by trying \
|
||||||
|
to take the symmetric difference of two relations with different universes.')
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('Taking the set difference of two relations can be done as follows.')
|
||||||
|
(X - Y).show()
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('Taking the set intersection is done using the & operator. It is \
|
||||||
|
bitwise multiplication.')
|
||||||
|
(X & Y).show()
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('Taking the set union is done using the | operator.')
|
||||||
|
(X | Y).show()
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('Any of these binary operations can be done with augmented assignment \
|
||||||
|
as well.')
|
||||||
|
print(X)
|
||||||
|
X -= Y
|
||||||
|
print(X)
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('We can take the dot product of two relations modulo 2, which is the \
|
||||||
|
same as the size of the intersection modulo 2.')
|
||||||
|
val1 = X.dot(Y)
|
||||||
|
val2 = len(X & Y) % 2
|
||||||
|
print(val1, val2)
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('We can check whether a given tuple belongs to a relation.')
|
||||||
|
print((0, 0, 1) in Z)
|
||||||
|
print((0, 1, 0) in Z)
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('For binary relations, there are a few options for displaying the \
|
||||||
|
relation.')
|
||||||
|
W = Relation(((0, 0), (1, 1), (1, 2), (2, 0)), 3)
|
||||||
|
W.show()
|
||||||
|
print()
|
||||||
|
W.show('binary_pixels')
|
||||||
|
print()
|
||||||
|
W.show('sparse')
|
||||||
|
print()
|
||||||
|
print('We can even produce LaTeX for a matrix.')
|
||||||
|
W.show('latex_matrix')
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('Let\'s show off a little bit.')
|
||||||
|
m = 29
|
||||||
|
# Create the circle of radius 0 in over Z/mZ.
|
||||||
|
A = Relation(((i, j) for (i, j) in product(range(m), repeat=2)
|
||||||
|
if (i ** 2 + j ** 2) % m == 0), m)
|
||||||
|
# Create two translates of it.
|
||||||
|
B = Relation(((i, j) for (i, j) in product(range(m), repeat=2)
|
||||||
|
if ((i+2) ** 2 + j ** 2) % m == 0), m)
|
||||||
|
C = Relation(((i, j) for (i, j) in product(range(m), repeat=2)
|
||||||
|
if ((i+3) ** 2 + (j-1) ** 2) % m == 0), m)
|
||||||
|
# Find all points which lie on the complement of the first circle and either \
|
||||||
|
# of the two translates.
|
||||||
|
D = ~A & (B | C)
|
||||||
|
D.show('sparse')
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('Note that relations are iterable.')
|
||||||
|
for tup in Z:
|
||||||
|
print(tup)
|
||||||
|
print(list(Z))
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('Relations can also be used as boolean values.')
|
||||||
|
if Z:
|
||||||
|
print('There are members of `Z.tuples`.')
|
||||||
|
if Z ^ Z:
|
||||||
|
print('This won\'t be printed because `Z ^ Z` is empty.')
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('We can create a random binary relation.')
|
||||||
|
random_rel = random_relation(28)
|
||||||
|
random_rel.show('sparse')
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('We can also find a random relation that differs from the previous \
|
||||||
|
one by one pixel.')
|
||||||
|
new_random_rel = random_adjacent_relation(random_rel)
|
||||||
|
new_random_rel.show('sparse')
|
Loading…
Reference in a new issue